We report on the growth and characterization of epitaxial YBa2Cu3O7−δ (YBCO) complex oxide thin films and related heterostructures exclusively by Pulsed Laser Deposition (PLD) and using first harmonic Nd:Y3Al5O12 (Nd:YAG) pulsed laser source (λ = 1064 nm). High-quality epitaxial YBCO thin film heterostructures display superconducting properties with transition temperature ∼ 80 K. Compared with the excimer lasers, when using Nd:YAG lasers, the optimal growth conditions are achieved at a large target-to-substrate distance d. These results clearly demonstrate the potential use of the first harmonic Nd:YAG laser source as an alternative to the excimer lasers for the PLD thin film community. Its compactness as well as the absence of any safety issues related to poisonous gas represent a major breakthrough in the deposition of complex multi-element compounds in form of thin films.

Nd:YAG infrared laser as a viable alternative to excimer laser: YBCO case study / S. Kumar Chaluvadi, S. Punathum Chalil, F. Mazzola, S. Dolabella, P. Rajak, M. Ferrara, R. Ciancio, J. Fujii, G. Panaccione, G. Rossi, P. Orgiani. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 13:(2023 Mar 08), pp. 3882.1-3882.8. [10.1038/s41598-023-30887-3]

Nd:YAG infrared laser as a viable alternative to excimer laser: YBCO case study

G. Rossi
Penultimo
;
2023

Abstract

We report on the growth and characterization of epitaxial YBa2Cu3O7−δ (YBCO) complex oxide thin films and related heterostructures exclusively by Pulsed Laser Deposition (PLD) and using first harmonic Nd:Y3Al5O12 (Nd:YAG) pulsed laser source (λ = 1064 nm). High-quality epitaxial YBCO thin film heterostructures display superconducting properties with transition temperature ∼ 80 K. Compared with the excimer lasers, when using Nd:YAG lasers, the optimal growth conditions are achieved at a large target-to-substrate distance d. These results clearly demonstrate the potential use of the first harmonic Nd:YAG laser source as an alternative to the excimer lasers for the PLD thin film community. Its compactness as well as the absence of any safety issues related to poisonous gas represent a major breakthrough in the deposition of complex multi-element compounds in form of thin films.
Settore FIS/03 - Fisica della Materia
8-mar-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
s41598-023-30887-3.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/957191
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact