This article approaches the Speech Emotion Recognition (SER) problem with the focus placed on multilingual settings. The proposed solution consists in a hierarchical scheme the first level of which identifies the speaker’s gender and the second level predicts the speaker’s emotional state. We elaborate with three classifiers of increased complexity, i.e. k-NN, transfer learning based on YAMNet and Bidirectional Long Short-Term Memory neural networks. Importantly, model learning, validation and testing consider the full range of the big- six emotions, while the dataset has been assembled using well-known SER datasets representing six different languages. The obtained results show differences in classifying all data against only female or male data with respect to all classifiers. Interestingly, a-priori genre recognition can boost the overall classification performance.
A Hierarchical Approach for Multilingual Speech Emotion Recognition / M. Nicolini, S. Ntalampiras - In: Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods / [a cura di] M. De Marsico, G. Sanniti di Baja, A. Fred. - [s.l] : ScitePress, 2023. - ISBN 978-989-758-626-2. - pp. 679-685 (( Intervento presentato al 12. convegno International Conference on Pattern Recognition Applications and Methods tenutosi a Lisbon nel 2023 [10.5220/0011714800003411].
A Hierarchical Approach for Multilingual Speech Emotion Recognition
S. Ntalampiras
Ultimo
2023
Abstract
This article approaches the Speech Emotion Recognition (SER) problem with the focus placed on multilingual settings. The proposed solution consists in a hierarchical scheme the first level of which identifies the speaker’s gender and the second level predicts the speaker’s emotional state. We elaborate with three classifiers of increased complexity, i.e. k-NN, transfer learning based on YAMNet and Bidirectional Long Short-Term Memory neural networks. Importantly, model learning, validation and testing consider the full range of the big- six emotions, while the dataset has been assembled using well-known SER datasets representing six different languages. The obtained results show differences in classifying all data against only female or male data with respect to all classifiers. Interestingly, a-priori genre recognition can boost the overall classification performance.File | Dimensione | Formato | |
---|---|---|---|
ICPRAM_2023_100_CR.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
249.33 kB
Formato
Adobe PDF
|
249.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.