The scientific literature has demonstrated that glutamine is one of the main beneficial amino acids. It plays an important role in gut microbiota and immunity. This paper provides a critical overview of experimental studies (in vitro, in vivo, and clinical) investigating the efficacy of glutamine and its effect on gut microbiota. As a result of this review, we have summarized that glutamine could affect gut microbiota via different mechanisms including the reduction in the ratio of Firmicutes to Bacteroidetes, with the activation of NF-kappa B and PI3K-Akt pathways, reducing the intestinal colonization (Eimeria lesions) and bacterial overgrowth or bacterial translocation, increasing the production of secretory immunoglobulin A (SIgA) and immunoglobulin A+ (IgA(+)) cells in the intestinal lumen, and decreasing asparagine levels. The potential applications of glutamine on gut microbiota include, but are not limited to, the management of obesity, bacterial translocation and community, cytokines profiles, and the management of side effects during post-chemotherapy and constipation periods. Further studies and reviews are needed regarding the effects of glutamine supplementation on other conditions in humans.

The Role of Glutamine in the Complex Interaction between Gut Microbiota and Health: A Narrative Review / S. Perna, T.A. Alalwan, Z. Alaali, T. Alnashaba, C. Gasparri, V. Infantino, L. Hammad, A. Riva, G. Petrangolini, P. Allegrini, M. Rondanelli. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - 20:20(2019 Oct 22), pp. 5232.1-5232.11. [10.3390/ijms20205232]

The Role of Glutamine in the Complex Interaction between Gut Microbiota and Health: A Narrative Review

S. Perna
Primo
;
2019

Abstract

The scientific literature has demonstrated that glutamine is one of the main beneficial amino acids. It plays an important role in gut microbiota and immunity. This paper provides a critical overview of experimental studies (in vitro, in vivo, and clinical) investigating the efficacy of glutamine and its effect on gut microbiota. As a result of this review, we have summarized that glutamine could affect gut microbiota via different mechanisms including the reduction in the ratio of Firmicutes to Bacteroidetes, with the activation of NF-kappa B and PI3K-Akt pathways, reducing the intestinal colonization (Eimeria lesions) and bacterial overgrowth or bacterial translocation, increasing the production of secretory immunoglobulin A (SIgA) and immunoglobulin A+ (IgA(+)) cells in the intestinal lumen, and decreasing asparagine levels. The potential applications of glutamine on gut microbiota include, but are not limited to, the management of obesity, bacterial translocation and community, cytokines profiles, and the management of side effects during post-chemotherapy and constipation periods. Further studies and reviews are needed regarding the effects of glutamine supplementation on other conditions in humans.
Amino acids; Diet; Glutamate; Glutamine; Gut; Microbiome; Microbiota; Obesity;
Settore MED/49 - Scienze Tecniche Dietetiche Applicate
22-ott-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
ijms-20-05232.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 241.26 kB
Formato Adobe PDF
241.26 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/956106
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 43
social impact