We present a new QCD evolution library for unpolarized parton distribution functions: EKO. The program solves DGLAP equations up to next-to-next-to-leading order. The unique feature of EKO is the computation of solution operators, which are independent of the boundary condition, can be stored and quickly applied to evolve several initial PDFs. The EKO approach combines the power of N-space solutions with the flexibility of a x-space delivery, that allows for an easy interface with existing codes. The code is fully open source and written in Python, with a modular structure in order to facilitate usage, readability and possible extensions. We provide a set of benchmarks with similar available tools, finding good agreement.

EKO: evolution kernel operators / A. Candido, F.A. Hekhorn, G. Magni. - In: THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6044. - 82:10(2022 Oct 31), pp. 976.1-976.18. [10.1140/epjc/s10052-022-10878-w]

EKO: evolution kernel operators

A. Candido
Primo
;
F.A. Hekhorn
Secondo
;
2022

Abstract

We present a new QCD evolution library for unpolarized parton distribution functions: EKO. The program solves DGLAP equations up to next-to-next-to-leading order. The unique feature of EKO is the computation of solution operators, which are independent of the boundary condition, can be stored and quickly applied to evolve several initial PDFs. The EKO approach combines the power of N-space solutions with the flexibility of a x-space delivery, that allows for an easy interface with existing codes. The code is fully open source and written in Python, with a modular structure in order to facilitate usage, readability and possible extensions. We provide a set of benchmarks with similar available tools, finding good agreement.
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/04 - Fisica Nucleare e Subnucleare
   Proton strucure for discovery at the Large Hadron Collider (NNNPDF)
   NNNPDF
   EUROPEAN COMMISSION
   H2020
   740006
31-ott-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
s10052-022-10878-w.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.61 MB
Formato Adobe PDF
3.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/955999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact