Time-varying fields in fast-ramping magnets for accelerators are difficult to compute in the range of accuracy required for magnet operation. This is due to the complexity of the dynamic phenomena such as hysteresis and 3D eddy currents. On the other hand, magnetic measurements that intercept all these physical phenomena are often limited to a subset of excitation cycles and restricted spatial domains. The measurement results are therefore difficult to extrapolate without a validated physical model of the device. This paper proposes measurement-updated field simulations to characterize dynamic effects in accelerator magnets. The main idea is to construct a reduced-order model, whose variables are retrievable from measurements by means of a state estimator, and to update the model by minimizing the error between simulations and measurements. The proposed method is applied to a linear, time-transient electromagnetic-field problem of an air-coil corrector magnet with aluminium collars. The proposed method is a first step towards a hybrid twin of an accelerator magnet.

Data-driven simulation of transient fields in air{\textendash}coil magnets for accelerators / S. Sorti, C. Petrone, S. Russenschuck, F. Braghin. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - 1011:(2021), pp. 165571.1-165571.13. [10.1016/j.nima.2021.165571]

Data-driven simulation of transient fields in air{\textendash}coil magnets for accelerators

S. Sorti
Primo
;
2021

Abstract

Time-varying fields in fast-ramping magnets for accelerators are difficult to compute in the range of accuracy required for magnet operation. This is due to the complexity of the dynamic phenomena such as hysteresis and 3D eddy currents. On the other hand, magnetic measurements that intercept all these physical phenomena are often limited to a subset of excitation cycles and restricted spatial domains. The measurement results are therefore difficult to extrapolate without a validated physical model of the device. This paper proposes measurement-updated field simulations to characterize dynamic effects in accelerator magnets. The main idea is to construct a reduced-order model, whose variables are retrievable from measurements by means of a state estimator, and to update the model by minimizing the error between simulations and measurements. The proposed method is applied to a linear, time-transient electromagnetic-field problem of an air-coil corrector magnet with aluminium collars. The proposed method is a first step towards a hybrid twin of an accelerator magnet.
Magnetic measurements; Normal-conducting magnets; Dynamic modelling; Model-order reduction; Eddy currents
Settore FIS/01 - Fisica Sperimentale
2021
https://www.sciencedirect.com/science/article/pii/S0168900221005568
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0168900221005568-main (1).pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/955435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact