The feature subset task can be cast as a multiobjective discrete optimization problem. In this work, we study the search algorithm component of a feature subset selection method. We propose an algorithm based on the threshold accepting method, extended to the multi-objective framework by an appropriate definition of the acceptance rule. The method is used in the task of identifying relevant subsets of features in a Web bot recognition problem, where automated software agents on the Web are identified by analyzing the stream of HTTP requests to a Web server.
Feature selection: A multi-objective stochastic optimization approach / S. Rovetta, G. Suchacka, A. Cabri, F. Masulli - In: 2020 IEEE 6th International Conference on Optimization and Applications (ICOA)[s.l] : IEEE, 2020. - ISBN 978-1-7281-6654-4. - pp. 1-5 (( Intervento presentato al 6. convegno International Conference on Optimization and Applications, ICOA 2020 tenutosi a Beni Mellal nel 2020 [10.1109/ICOA49421.2020.9094478].
Feature selection: A multi-objective stochastic optimization approach
A. CabriPenultimo
;
2020
Abstract
The feature subset task can be cast as a multiobjective discrete optimization problem. In this work, we study the search algorithm component of a feature subset selection method. We propose an algorithm based on the threshold accepting method, extended to the multi-objective framework by an appropriate definition of the acceptance rule. The method is used in the task of identifying relevant subsets of features in a Web bot recognition problem, where automated software agents on the Web are identified by analyzing the stream of HTTP requests to a Web server.File | Dimensione | Formato | |
---|---|---|---|
ICOA2020-Rovetta.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
220.63 kB
Formato
Adobe PDF
|
220.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Feature_selection_a_multi-objective_stochastic_optimization_approach.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
130.88 kB
Formato
Adobe PDF
|
130.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.