Multidimensional data streams are a major paradigm in data science. This work focuses on possibilistic clustering algorithms as means to perform clustering of multidimensional streaming data. The proposed approach exploits fuzzy outlier analysis to provide good learning and tracking abilities in both concept shift and concept drift.

Graded Possibilistic Clustering of Non-stationary Data Streams / A.R.A. Abdullatif, F. Masulli, S. Rovetta, A. Cabri (LECTURE NOTES IN COMPUTER SCIENCE). - In: Fuzzy Logic and Soft Computing Applications / [a cura di] A. Petrosino, V. Loia, W. Pedrycz. - [s.l] : Springer, 2017. - ISBN 978-3-319-52961-5. - pp. 139-150 (( Intervento presentato al 11. convegno WILF tenutosi a Napoli nel 2016 [10.1007/978-3-319-52962-2_12].

Graded Possibilistic Clustering of Non-stationary Data Streams

A. Cabri
2017

Abstract

Multidimensional data streams are a major paradigm in data science. This work focuses on possibilistic clustering algorithms as means to perform clustering of multidimensional streaming data. The proposed approach exploits fuzzy outlier analysis to provide good learning and tracking abilities in both concept shift and concept drift.
Settore INF/01 - Informatica
2017
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
978-3-319-52962-2_12.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/955218
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact