Here we discuss the use of a family of electrode materials, which exhibit specific electrocatalytic activity for hydrogen evolution reaction and hydrogen oxidation reaction. These composite materials show extended lifetime, also being very cheap in comparison with pure palladium. We specifically focus on composite electrodes formed by Pd and ZrO2, a ceramic oxide compatible with human tissues, whose role is to enhance the electroactivity of classic platinum group metals, thus significantly reducing the catalyst load. To carefully control the electrocatalyst composition and morphology, the electrodes are prepared by ion beam sputtering deposition onto fluorine-doped tin oxide supports, thus obtaining ordered layers of ceramic and electrocatalyst. The outcomes point to the synergistic effects between the precious metal catalyst and ceramic diluent not only in terms of the chemical stability of the layer but also of the electrochemical activity of the composite material.

Highly active Pd–ZrO2 electrodes for hydrogen evolution reaction / S. Minelli, S. Rondinini, X. He, A. Vertova, C. Lenardi, C. Piazzoni, S.A. Locarno, A. Minguzzi. - In: SUSTAINABLE ENERGY & FUELS. - ISSN 2398-4902. - 7:5(2023), pp. 1333-1342. [10.1039/D3SE00053B]

Highly active Pd–ZrO2 electrodes for hydrogen evolution reaction

S. Minelli
Primo
;
S. Rondinini;X. He;A. Vertova
;
C. Lenardi;C. Piazzoni;S.A. Locarno
Penultimo
;
A. Minguzzi
Ultimo
2023

Abstract

Here we discuss the use of a family of electrode materials, which exhibit specific electrocatalytic activity for hydrogen evolution reaction and hydrogen oxidation reaction. These composite materials show extended lifetime, also being very cheap in comparison with pure palladium. We specifically focus on composite electrodes formed by Pd and ZrO2, a ceramic oxide compatible with human tissues, whose role is to enhance the electroactivity of classic platinum group metals, thus significantly reducing the catalyst load. To carefully control the electrocatalyst composition and morphology, the electrodes are prepared by ion beam sputtering deposition onto fluorine-doped tin oxide supports, thus obtaining ordered layers of ceramic and electrocatalyst. The outcomes point to the synergistic effects between the precious metal catalyst and ceramic diluent not only in terms of the chemical stability of the layer but also of the electrochemical activity of the composite material.
Settore CHIM/02 - Chimica Fisica
   One Health Action Hub: task force di Ateneo per la resilienza di ecosistemi territoriali (1H_Hub) Linea Strategica 3, Tema One health, one earth
   1H_Hub
   UNIVERSITA' DEGLI STUDI DI MILANO

   Novel Multilayered and Micro.Machined Electrode nano-Architectures for Electrocatalytic Applica-tions (Fuel cells and Electrolyzers)
   Fuel cells and Electrolyzers
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2017YH9MRK_004
2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
SusEnerFuel.pdf

accesso aperto

Descrizione: paper
Tipologia: Publisher's version/PDF
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/955030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact