We present a method to analyze the dynamics of physiological networks beyond the framework of pairwise interactions. Our method defines the so-called O-information rate (OIR) as a measure of the higher-order interaction among several physiological variables. The OIR measure is computed from the vector autoregressive representation of multiple time series, and is applied to the network formed by heart period, systolic and diastolic arterial pressure, respiration and cerebral blood flow variability series measured in healthy subjects at rest and after head-up tilt. Our results document that cardiovascular, cerebrovascular and respiratory interactions are highly redundant, and that redundancy is enhanced by the entrainment of cardiovascular and cerebrovascular oscillations and by sympathetic activation.

Quantifying high-order interactions in cardiovascular and cerebrovascular networks / L. Faes, G. Mijatovic, L. Sparacino, R. Pernice, Y. Antonacci, A. Porta, S. Stramaglia - In: 2022 12th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO)[s.l] : IEEE Press, 2022. - ISBN 978-1-6654-8513-5. - pp. 1-2 (( Intervento presentato al 12. convegno Conference of the European Study Group on Cardiovascular Oscillations (ESGCO) tenutosi a Štrbské Pleso nel 2022 [10.1109/ESGCO55423.2022.9931385].

Quantifying high-order interactions in cardiovascular and cerebrovascular networks

A. Porta
Penultimo
;
2022

Abstract

We present a method to analyze the dynamics of physiological networks beyond the framework of pairwise interactions. Our method defines the so-called O-information rate (OIR) as a measure of the higher-order interaction among several physiological variables. The OIR measure is computed from the vector autoregressive representation of multiple time series, and is applied to the network formed by heart period, systolic and diastolic arterial pressure, respiration and cerebral blood flow variability series measured in healthy subjects at rest and after head-up tilt. Our results document that cardiovascular, cerebrovascular and respiratory interactions are highly redundant, and that redundancy is enhanced by the entrainment of cardiovascular and cerebrovascular oscillations and by sympathetic activation.
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
2022
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
Faes_ESGCO_2022.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 410.19 kB
Formato Adobe PDF
410.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/954536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact