Expression of the prion protein (PrPC) is a requirement for host susceptibility to the transmissible spongiform encephalopathies (TSEs) and thought to be necessary for the replication and transport of the infectious agent. The mechanism of TSE neuroinvasion is not fully understood, although the routing of infection has been mapped through the peripheral nervous system (PNS) and Schwann cells have been implicated as a potential conduit for transport of the TSE infectious agent. To address whether Schwann cells are a requirement for spread of the TSE agent from the site of infection to the CNS, PrPC expression was selectively removed from Schwann cells in vivo. This dramatically reduced total PrPC within peripheral nerves by 90%, resulting in the selective loss of glycosylated PrPC species. Despite this, 139A and ME7 mouse-passaged scrapie agent strains were efficiently replicated and transported to the CNS following oral and intraperitoneal exposure. Thus, the myelinating glial cells within the PNS do not appear to play a significant role in TSE neuroinvasion.

Dramatic Reduction of PrPC Level and Glycosylation in Peripheral Nerves following PrP Knock-Out from Schwann Cells Does Not Prevent Transmissible Spongiform Encephalopathy Neuroinvasion / M. Bradford Barry, L. Tuzi Nadia, M. Feltri, C. Mccorquodale, E. Cancellotti, C. Manson Jean. - In: THE JOURNAL OF NEUROSCIENCE. - ISSN 0270-6474. - 29:49(2009), pp. 15445-15454. [10.1523/JNEUROSCI.4195-09.2009]

Dramatic Reduction of PrPC Level and Glycosylation in Peripheral Nerves following PrP Knock-Out from Schwann Cells Does Not Prevent Transmissible Spongiform Encephalopathy Neuroinvasion

M. Feltri
Membro del Collaboration Group
;
2009

Abstract

Expression of the prion protein (PrPC) is a requirement for host susceptibility to the transmissible spongiform encephalopathies (TSEs) and thought to be necessary for the replication and transport of the infectious agent. The mechanism of TSE neuroinvasion is not fully understood, although the routing of infection has been mapped through the peripheral nervous system (PNS) and Schwann cells have been implicated as a potential conduit for transport of the TSE infectious agent. To address whether Schwann cells are a requirement for spread of the TSE agent from the site of infection to the CNS, PrPC expression was selectively removed from Schwann cells in vivo. This dramatically reduced total PrPC within peripheral nerves by 90%, resulting in the selective loss of glycosylated PrPC species. Despite this, 139A and ME7 mouse-passaged scrapie agent strains were efficiently replicated and transported to the CNS following oral and intraperitoneal exposure. Thus, the myelinating glial cells within the PNS do not appear to play a significant role in TSE neuroinvasion.
Settore MED/26 - Neurologia
2009
Article (author)
File in questo prodotto:
File Dimensione Formato  
dramatic reduction prp.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 6.75 MB
Formato Adobe PDF
6.75 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/954109
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact