In this paper we prove new rigidity results for complete, possibly non-compact, critical metrics of the quadratic curvature functionals Ft2=∫|Ricg|2dVg+t∫Rg2dVg, t∈R, and S2=∫Rg2dVg. We show that (i) flat surfaces are the only critical points of S2, (ii) flat three-dimensional manifolds are the only critical points of Ft2 for every t>−[Formula presented], (iii) three-dimensional scalar flat manifolds are the only critical points of S2 with finite energy and (iv) n-dimensional, n>4, scalar flat manifolds are the only critical points of S2 with finite energy and scalar curvature bounded below. In case (i), our proof relies on rigidity results for conformal vector fields and an ODE argument; in case (ii) we draw upon some ideas of M.T. Anderson concerning regularity, convergence and rigidity of critical metrics; in cases (iii) and (iv) the proofs are self-contained and depend on new pointwise and integral estimates.

Rigidity of critical metrics for quadratic curvature functionals / G. Catino, P. Mastrolia, D.D. Monticelli. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 171:(2023 Mar), pp. 102-121. [10.1016/j.matpur.2023.01.001]

Rigidity of critical metrics for quadratic curvature functionals

P. Mastrolia
Penultimo
;
D.D. Monticelli
Ultimo
2023

Abstract

In this paper we prove new rigidity results for complete, possibly non-compact, critical metrics of the quadratic curvature functionals Ft2=∫|Ricg|2dVg+t∫Rg2dVg, t∈R, and S2=∫Rg2dVg. We show that (i) flat surfaces are the only critical points of S2, (ii) flat three-dimensional manifolds are the only critical points of Ft2 for every t>−[Formula presented], (iii) three-dimensional scalar flat manifolds are the only critical points of S2 with finite energy and (iv) n-dimensional, n>4, scalar flat manifolds are the only critical points of S2 with finite energy and scalar curvature bounded below. In case (i), our proof relies on rigidity results for conformal vector fields and an ODE argument; in case (ii) we draw upon some ideas of M.T. Anderson concerning regularity, convergence and rigidity of critical metrics; in cases (iii) and (iv) the proofs are self-contained and depend on new pointwise and integral estimates.
Critical metrics; Quadratic functionals; Rigidity results;
Settore MAT/03 - Geometria
Settore MAT/05 - Analisi Matematica
mar-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021782423000016-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 431.61 kB
Formato Adobe PDF
431.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2110.02683.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 272.47 kB
Formato Adobe PDF
272.47 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/953992
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact