We consider a one-dimensional integral inequality of Moser type: setJ(c)(v) = integral(1)(0) e(c(s)v2(s)) ds and consider sup({integral 01 vertical bar v'vertical bar 2=1,v(0)=0}) J(c)(v)We show that the supremum remains finite up to the optimal coefficient c(1)(s) = 1/s (log e/s + log log e/s). Indeed, for c(gamma) = 1/s (log e/s + gamma log log e/s), with gamma > 1, the supremum is infinite. For c(1) the inequality is critical with loss of compactness: the functional J(c1) fails to be weakly continuous along the infinitesimal Moser sequence w(n)(t) := t root n (0 <= t <= 1/n) w(n)(t) = 1 root n (1/n <= t <= 1). Since w'(t) = root n (0 <= t <= 1/n), one may say that w(n) develops an infinitesimal shock at the origin.
A critical Moser type inequality with loss of compactness due to infinitesimal shocks / J. do O, B. Ruf, P. Ubilla. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 62:1(2023 Jan), pp. 8.1-8.22. [10.1007/s00526-022-02367-5]
A critical Moser type inequality with loss of compactness due to infinitesimal shocks
B. Ruf
Secondo
;
2023
Abstract
We consider a one-dimensional integral inequality of Moser type: setJ(c)(v) = integral(1)(0) e(c(s)v2(s)) ds and consider sup({integral 01 vertical bar v'vertical bar 2=1,v(0)=0}) J(c)(v)We show that the supremum remains finite up to the optimal coefficient c(1)(s) = 1/s (log e/s + log log e/s). Indeed, for c(gamma) = 1/s (log e/s + gamma log log e/s), with gamma > 1, the supremum is infinite. For c(1) the inequality is critical with loss of compactness: the functional J(c1) fails to be weakly continuous along the infinitesimal Moser sequence w(n)(t) := t root n (0 <= t <= 1/n) w(n)(t) = 1 root n (1/n <= t <= 1). Since w'(t) = root n (0 <= t <= 1/n), one may say that w(n) develops an infinitesimal shock at the origin.File | Dimensione | Formato | |
---|---|---|---|
s00526-022-02367-5.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
358.73 kB
Formato
Adobe PDF
|
358.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.