We consider a one-dimensional integral inequality of Moser type: setJ(c)(v) = integral(1)(0) e(c(s)v2(s)) ds and consider sup({integral 01 vertical bar v'vertical bar 2=1,v(0)=0}) J(c)(v)We show that the supremum remains finite up to the optimal coefficient c(1)(s) = 1/s (log e/s + log log e/s). Indeed, for c(gamma) = 1/s (log e/s + gamma log log e/s), with gamma > 1, the supremum is infinite. For c(1) the inequality is critical with loss of compactness: the functional J(c1) fails to be weakly continuous along the infinitesimal Moser sequence w(n)(t) := t root n (0 <= t <= 1/n) w(n)(t) = 1 root n (1/n <= t <= 1). Since w'(t) = root n (0 <= t <= 1/n), one may say that w(n) develops an infinitesimal shock at the origin.

A critical Moser type inequality with loss of compactness due to infinitesimal shocks / J. do O, B. Ruf, P. Ubilla. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 62:1(2023 Jan), pp. 8.1-8.22. [10.1007/s00526-022-02367-5]

A critical Moser type inequality with loss of compactness due to infinitesimal shocks

B. Ruf
Secondo
;
2023

Abstract

We consider a one-dimensional integral inequality of Moser type: setJ(c)(v) = integral(1)(0) e(c(s)v2(s)) ds and consider sup({integral 01 vertical bar v'vertical bar 2=1,v(0)=0}) J(c)(v)We show that the supremum remains finite up to the optimal coefficient c(1)(s) = 1/s (log e/s + log log e/s). Indeed, for c(gamma) = 1/s (log e/s + gamma log log e/s), with gamma > 1, the supremum is infinite. For c(1) the inequality is critical with loss of compactness: the functional J(c1) fails to be weakly continuous along the infinitesimal Moser sequence w(n)(t) := t root n (0 <= t <= 1/n) w(n)(t) = 1 root n (1/n <= t <= 1). Since w'(t) = root n (0 <= t <= 1/n), one may say that w(n) develops an infinitesimal shock at the origin.
Settore MAT/05 - Analisi Matematica
gen-2023
5-nov-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
s00526-022-02367-5.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 358.73 kB
Formato Adobe PDF
358.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/953184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact