In recent years, a correlation between mass accretion rates onto new-born stars and their protoplanetary disc masses was detected in nearby young star-forming regions. Although such a correlation can be interpreted as due to viscous-diffusion processes in the disc, highly accreting sources with low disc masses in more evolved regions remain puzzling. In this paper, we hypothesize that the presence of a stellar companion truncating the disc can explain these outliers. First, we searched the literature for information on stellar multiplicity in Lupus, Chamaeleon I, and Upper Sco, finding that roughly 20 per cent of the discs involved in the correlation are in binaries or higher order multiple stellar systems. We prove with high statistical significance that at any disc mass these sources have systematically higher accretion rates than those in single-stars, with the bulk of the binary population being clustered around M-disc/ M-acc approximate to 0.1 Myr. We then run coupled gas and dust one-dimensional evolutionary models of tidally truncated discs to be compared with the data. We find that these models are able to reproduce well most of the population of observed discs in Lupus and Upper Sco, even though the unknown eccentricity of each binary prevents an object by object comparison. In the latter region, the agreement improves if the grain coagulation efficiency is reduced, as may be expected in discs around close binaries. Finally, we mention that thermal winds and sub-structures can be important in explaining few outlying sources.
Stellar multiplicity affects the correlation between proto-planetary disc masses and accretion rates: binaries explain high-accretors in upper sco / F. Zagaria, C. J Clarke, G.P. Rosotti, C. F Manara. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 512:3(2022 May), pp. 3538-3550. [10.1093/mnras/stac621]
Stellar multiplicity affects the correlation between proto-planetary disc masses and accretion rates: binaries explain high-accretors in upper sco
G.P. RosottiPenultimo
;
2022
Abstract
In recent years, a correlation between mass accretion rates onto new-born stars and their protoplanetary disc masses was detected in nearby young star-forming regions. Although such a correlation can be interpreted as due to viscous-diffusion processes in the disc, highly accreting sources with low disc masses in more evolved regions remain puzzling. In this paper, we hypothesize that the presence of a stellar companion truncating the disc can explain these outliers. First, we searched the literature for information on stellar multiplicity in Lupus, Chamaeleon I, and Upper Sco, finding that roughly 20 per cent of the discs involved in the correlation are in binaries or higher order multiple stellar systems. We prove with high statistical significance that at any disc mass these sources have systematically higher accretion rates than those in single-stars, with the bulk of the binary population being clustered around M-disc/ M-acc approximate to 0.1 Myr. We then run coupled gas and dust one-dimensional evolutionary models of tidally truncated discs to be compared with the data. We find that these models are able to reproduce well most of the population of observed discs in Lupus and Upper Sco, even though the unknown eccentricity of each binary prevents an object by object comparison. In the latter region, the agreement improves if the grain coagulation efficiency is reduced, as may be expected in discs around close binaries. Finally, we mention that thermal winds and sub-structures can be important in explaining few outlying sources.File | Dimensione | Formato | |
---|---|---|---|
stac621.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.