Stars in globular clusters formed and evolved in the most extreme environment: high density and low metallicity. If the formation of stars and planets is at all sensitive to environmental conditions, this should therefore be evident in globular clusters. Observations have indicated that hot Jupiters are at least an order of magnitude less prevalent in the central region of the globular cluster 47 Tucanae (Tuc) than in the field. In this work, we explore the claims in the literature for additional consequences for the low-mass stellar initial mass function. Tidal capture, the mechanism that produces X-ray binaries in globular clusters, applies also to brown dwarfs (BDs). This process produces tight stellar-BD binaries that would be detectable by transit surveys. Applying a Monte Carlo dynamical evolution model, we compute the overall BD capture rates. We find that the number of captures is lower than previous estimates. Capture efficiency increases steeply with stellar mass, which means that mass segregation reduces capture efficiency as BDs and low-mass stars occupy the same regions. The result of this effect is that the current constraints on the short-period companion fraction remain marginally consistent with initially equal numbers of BDs and stars. However, our findings suggest that expanding the sample in 47 Tuc or surveying other globular clusters for close substellar companions can yield constraints on the substellar initial mass function in these environments. We estimate the capture rates in other globular clusters and suggest that 47 Tuc remains a promising target for future transit surveys.

Forming short-period substellar companions in 47 Tucanae - I. Dynamical model and brown dwarf tidal capture rates / A. Winter, G. Rosotti, C. Clarke, M. Giersz. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 509:3(2022 Jan), pp. 3924-3937. [10.1093/mnras/stab3272]

Forming short-period substellar companions in 47 Tucanae - I. Dynamical model and brown dwarf tidal capture rates

G. Rosotti
Secondo
;
2022

Abstract

Stars in globular clusters formed and evolved in the most extreme environment: high density and low metallicity. If the formation of stars and planets is at all sensitive to environmental conditions, this should therefore be evident in globular clusters. Observations have indicated that hot Jupiters are at least an order of magnitude less prevalent in the central region of the globular cluster 47 Tucanae (Tuc) than in the field. In this work, we explore the claims in the literature for additional consequences for the low-mass stellar initial mass function. Tidal capture, the mechanism that produces X-ray binaries in globular clusters, applies also to brown dwarfs (BDs). This process produces tight stellar-BD binaries that would be detectable by transit surveys. Applying a Monte Carlo dynamical evolution model, we compute the overall BD capture rates. We find that the number of captures is lower than previous estimates. Capture efficiency increases steeply with stellar mass, which means that mass segregation reduces capture efficiency as BDs and low-mass stars occupy the same regions. The result of this effect is that the current constraints on the short-period companion fraction remain marginally consistent with initially equal numbers of BDs and stars. However, our findings suggest that expanding the sample in 47 Tuc or surveying other globular clusters for close substellar companions can yield constraints on the substellar initial mass function in these environments. We estimate the capture rates in other globular clusters and suggest that 47 Tuc remains a promising target for future transit surveys.
brown dwarfs; stars: formation; stars: kinematics and dynamics; globular clusters: individual: 47 Tucanae;
Settore FIS/05 - Astronomia e Astrofisica
gen-2022
12-nov-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
view(2)(1).pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri
stab3272.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.28 MB
Formato Adobe PDF
2.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/952814
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact