We report the discovery of periodic dips in the multiband light curve of ISO-ChaI 52, a young stellar object in the Chamaeleon I dark cloud. This is one of the peculiar objects that display very low or negligible accretion in their UV continuum and spectral lines, although they present a remarkable infrared excess emission characteristic of optically thick circumstellar disks. We have analyzed a spectrum obtained at the Very Large Telescope with the X-shooter spectrograph with the tool ROTFIT to determine the stellar parameters. The latter, along with photometry from our campaign with the Rapid Eye Mount telescope and from the literature, have allowed us to model the spectral energy distribution and to estimate the size and temperature of the inner and outer disk. Based on the rotational period of the star-disk system of 3.45 days, we estimate a disk inclination of 36 degrees. The depth of the dips in different bands has been used to gain information about the occulting material. A single extinction law is not able to fit the observed behavior, while a two-component model of a disk warp composed of a dense region with a gray extinction and an upper layer with an extinction as in the interstellar medium provides a better fit to the data.

ISO-ChaI 52: a weakly accreting young stellar object with a dipper light curve / A. Frasca, C.F. Manara, J.M. Alcalá, K. Biazzo, L. Venuti, E. Covino, G. Rosotti, B. Stelzer, D. Fedele. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 639:(2020), pp. L8.1-L8.10. [10.1051/0004-6361/202038157]

ISO-ChaI 52: a weakly accreting young stellar object with a dipper light curve

G. Rosotti;
2020

Abstract

We report the discovery of periodic dips in the multiband light curve of ISO-ChaI 52, a young stellar object in the Chamaeleon I dark cloud. This is one of the peculiar objects that display very low or negligible accretion in their UV continuum and spectral lines, although they present a remarkable infrared excess emission characteristic of optically thick circumstellar disks. We have analyzed a spectrum obtained at the Very Large Telescope with the X-shooter spectrograph with the tool ROTFIT to determine the stellar parameters. The latter, along with photometry from our campaign with the Rapid Eye Mount telescope and from the literature, have allowed us to model the spectral energy distribution and to estimate the size and temperature of the inner and outer disk. Based on the rotational period of the star-disk system of 3.45 days, we estimate a disk inclination of 36 degrees. The depth of the dips in different bands has been used to gain information about the occulting material. A single extinction law is not able to fit the observed behavior, while a two-component model of a disk warp composed of a dense region with a gray extinction and an upper layer with an extinction as in the interstellar medium provides a better fit to the data.
stars: pre-main sequence; stars: low-mass; accretion, accretion disks; protoplanetary disks
Settore FIS/05 - Astronomia e Astrofisica
   Dust and gas in planet forming discs (DUSTBUSTER)
   DUSTBUSTER
   EUROPEAN COMMISSION
   H2020
   823823
2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
aa38157-20.pdf

accesso riservato

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/952799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact