In this paper, we present a knowledge-based approach for legal document retrieval based on the organization of a textual data repository and on document embedding models. Pre-processed and embedded documents are iteratively classified at sentence level through a terminology extraction and concept formation cycle, using a zero-knowledge approach that offers a high degree of flexibility with regard to the integration of external knowledge and the variability of inputs, suitable to face the scarcity of annotated data and the specificity of terminology that feature the Italian legal domain document corpora.
Knowledge-Based Legal Document Retrieval: A Case Study on Italian Civil Court Decisions / V. Bellandi, S. Castano, P. Ceravolo, E. Damiani, A. Ferrara, S. Montanelli, S. Picascia, A. Polimeno, D. Riva (CEUR WORKSHOP PROCEEDINGS). - In: EKAW-C 2022 : EKAW 2022 Companion Volume / [a cura di] D. Symeonidou, R. Yu, D. Ceolin, M. Poveda-Villalón, D. Audrito, L. Di Caro, F. Grasso, R. Nai, E. Sulis, F.J. Ekaputra, O. Kutz, N. Troquard. - [s.l] : CEUR-WS, 2022. - pp. 1-13 (( Intervento presentato al 23. convegno International Conference on Knowledge Engineering and Knowledge Management, EKAW-C 2022 tenutosi a Bolzano nel 2022.
Knowledge-Based Legal Document Retrieval: A Case Study on Italian Civil Court Decisions
V. BellandiPrimo
;S. CastanoSecondo
;P. Ceravolo;E. Damiani;A. Ferrara;S. Montanelli;S. Picascia;A. PolimenoPenultimo
;D. RivaUltimo
2022
Abstract
In this paper, we present a knowledge-based approach for legal document retrieval based on the organization of a textual data repository and on document embedding models. Pre-processed and embedded documents are iteratively classified at sentence level through a terminology extraction and concept formation cycle, using a zero-knowledge approach that offers a high degree of flexibility with regard to the integration of external knowledge and the variability of inputs, suitable to face the scarcity of annotated data and the specificity of terminology that feature the Italian legal domain document corpora.File | Dimensione | Formato | |
---|---|---|---|
km4law2.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.