Reduced trophic resources can pose relevant constraints to the development of freshwater animals with complex life cycles. For amphibians, food deprived environments, such as high-altitude ponds and springs and groundwaters are frequently used for breeding. The aim of this study is to outline trophic conditions leading to extreme cases of delayed larval development and increased size at metamorphosis of a European widespread amphibian, the fire salamander (Salamandra salamandra). We collected 150 fire salamander larvae, split them in two groups, one with high and one with low trophic resource availability. We then observed the effects of nutritional conditions on larval development recording time to metamorphosis and average day growth. Moreover, in the field, we surveyed larvae growth and size at metamorphosis in two artificial subterranean sites with low prey availability. Trophic conditions strongly affected larval development and under low food treatment time to metamorphosis reached up to 416 days. In the subterranean environments we observed a similar pattern, with larvae requiring more than one year to attain metamorphosis but reaching unexpected large sizes. Environmental trophic conditions experienced during early stages can induce strong delay in metamorphosis of the fire salamander; this plasticity makes fire salamander larvae optimal models for comparative studies and cross-environment experiments.

How Trophic Conditions Affect Development of Fire Salamander (Salamandra salamandra) Larvae: Two Extreme Cases / P. Cogliati, B. Barzaghi, A. Melotto, G.F. Ficetola, R. Manenti. - In: DIVERSITY. - ISSN 1424-2818. - 14:6(2022), pp. 487.1-487.9. [10.3390/d14060487]

How Trophic Conditions Affect Development of Fire Salamander (Salamandra salamandra) Larvae: Two Extreme Cases

B. Barzaghi;A. Melotto;G.F. Ficetola;R. Manenti
Ultimo
2022

Abstract

Reduced trophic resources can pose relevant constraints to the development of freshwater animals with complex life cycles. For amphibians, food deprived environments, such as high-altitude ponds and springs and groundwaters are frequently used for breeding. The aim of this study is to outline trophic conditions leading to extreme cases of delayed larval development and increased size at metamorphosis of a European widespread amphibian, the fire salamander (Salamandra salamandra). We collected 150 fire salamander larvae, split them in two groups, one with high and one with low trophic resource availability. We then observed the effects of nutritional conditions on larval development recording time to metamorphosis and average day growth. Moreover, in the field, we surveyed larvae growth and size at metamorphosis in two artificial subterranean sites with low prey availability. Trophic conditions strongly affected larval development and under low food treatment time to metamorphosis reached up to 416 days. In the subterranean environments we observed a similar pattern, with larvae requiring more than one year to attain metamorphosis but reaching unexpected large sizes. Environmental trophic conditions experienced during early stages can induce strong delay in metamorphosis of the fire salamander; this plasticity makes fire salamander larvae optimal models for comparative studies and cross-environment experiments.
salamander; trophic; amphibians; tadpole; growth; stream; freshwater; method; carryover; Salamandra
Settore BIO/05 - Zoologia
2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
diversity-14-00487 how trophic conditions Cogliati et al 2022.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/949058
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact