Context. Disk winds are an important mechanism for accretion and disk evolution around young stars. The accreting intermediatemass T-Tauri star RY Tau has an active jet and a previously known disk wind. Archival optical and new near-infrared observations of the RY Tau system show two horn-like components stretching out as a cone from RY Tau. Scattered light from the disk around RY Tau is visible in the near-infrared, but not seen at optical wavelengths. In the near-infrared, dark wedges separate the horns from the disk, indicating that we may see the scattered light from a disk wind. Aims. We aim to test the hypothesis that a dusty disk wind could be responsible for the optical effect in which the disk around RY Tau is hidden in the I band, but visible in the H band. This could be the first detection of a dusty disk wind in scattered light. We also want to constrain the grain size and dust mass in the wind and the wind-launching region. Methods. We used archived Atacama-Large-Millimetre-Array (ALMA) and Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) I band observations combined with newly acquired SPHERE H band observations and available literature to build a simple geometric model of the RY Tau disk and disk wind.We used Monte Carlo radiative transfer modelling MCMax3D to create comparable synthetic observations that test the effect of a dusty wind on the optical effect in the observations. We constrained the grain size and dust mass needed in the disk wind to reproduce the effect from the observations. Results. A model geometrically reminiscent of a dusty disk wind with small micron to sub-micron-sized grains elevated above the disk can reproduce the optical effect seen in the observations. The mass in the obscuring component of the wind has been constrained to 1 × 10-9M⊙≤ M ≤ 5 × 10-8M⊙, which corresponds to a mass-loss rate in the wind of about 1 × 10.8 M yr.1. Conclusions. A simple model of a disk wind with micron to sub-micron-sized grains elevated above the disk is able to prevent stellar radiation to scatter in the disk at optical wavelengths while allowing photons to reach the disk in the near-infrared. Estimates of massloss rate correspond to previously presented theoretical models and points towards the idea that a magneto-hydrodynamic-type wind is the more likely scenario.
Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): Scattered light detection of a possible disk wind in RY Tau / P.-. Valegård, C. Ginski, C. Dominik, J. Bae, M. Benisty, T. Birnstiel, S. Facchini, A. Garufi, M. Hogerheijde, R.G. van Holstein, M. Langlois, C.F. Manara, P. Pinilla, C. Rab, Á. Ribas, L.B.F.M. Waters, J. Williams. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 668:(2022 Dec), pp. A25.1-A25.10. [10.1051/0004-6361/202244001]
Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): Scattered light detection of a possible disk wind in RY Tau
S. Facchini;
2022
Abstract
Context. Disk winds are an important mechanism for accretion and disk evolution around young stars. The accreting intermediatemass T-Tauri star RY Tau has an active jet and a previously known disk wind. Archival optical and new near-infrared observations of the RY Tau system show two horn-like components stretching out as a cone from RY Tau. Scattered light from the disk around RY Tau is visible in the near-infrared, but not seen at optical wavelengths. In the near-infrared, dark wedges separate the horns from the disk, indicating that we may see the scattered light from a disk wind. Aims. We aim to test the hypothesis that a dusty disk wind could be responsible for the optical effect in which the disk around RY Tau is hidden in the I band, but visible in the H band. This could be the first detection of a dusty disk wind in scattered light. We also want to constrain the grain size and dust mass in the wind and the wind-launching region. Methods. We used archived Atacama-Large-Millimetre-Array (ALMA) and Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) I band observations combined with newly acquired SPHERE H band observations and available literature to build a simple geometric model of the RY Tau disk and disk wind.We used Monte Carlo radiative transfer modelling MCMax3D to create comparable synthetic observations that test the effect of a dusty wind on the optical effect in the observations. We constrained the grain size and dust mass needed in the disk wind to reproduce the effect from the observations. Results. A model geometrically reminiscent of a dusty disk wind with small micron to sub-micron-sized grains elevated above the disk can reproduce the optical effect seen in the observations. The mass in the obscuring component of the wind has been constrained to 1 × 10-9M⊙≤ M ≤ 5 × 10-8M⊙, which corresponds to a mass-loss rate in the wind of about 1 × 10.8 M yr.1. Conclusions. A simple model of a disk wind with micron to sub-micron-sized grains elevated above the disk is able to prevent stellar radiation to scatter in the disk at optical wavelengths while allowing photons to reach the disk in the near-infrared. Estimates of massloss rate correspond to previously presented theoretical models and points towards the idea that a magneto-hydrodynamic-type wind is the more likely scenario.File | Dimensione | Formato | |
---|---|---|---|
valegard2022.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
5.73 MB
Formato
Adobe PDF
|
5.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
valegard2022_arxiv.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
2 MB
Formato
Adobe PDF
|
2 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.