Since chlorohydrazones are planar molecules, it is in principle possible to distinguish between their E and Z stereoisomers. Chlorohydrazones are known to preferentially assume the Z configuration around the C=N double bond, and their (E, Z) isomerization is almost suppressed at room temperature. The lack, or rather the difficulty, of such an isomerization has been conveniently addressed by the in-depth theoretical study of seven C-methoxycarbonyl-N-aryl chlorohydrazones (aryl = phenyl, 4-chlorophenyl, 4-bromophenyl, 4-iodophenyl, 2-chlorophenyl, 2-bromophenyl, and 2-iodophenyl). DFT ωB97M-D4/cc-pVTZ calculations of these C-methoxycarbonyl-N-aryl chlorohydrazones, supported by the XRD determination of the molecular structure, provided a complete picture of the isomerization processes in the studied compounds. The analysis of the en- ergetics, molecular geometry, and electronic structure (the latter in the framework of the Quantum Theory of Atoms In Molecules) showed that the Z isomers are thermodynamically favored because, within the low-energy planar isomers with extensive π conjugation, the electrostatic interactions between the dipoles of the C–O, C–Cl, and N–H bonds overcome the stabilization induced by the N–H ··· O bond present in the E isomers. We confirmed that the (E, Z) isomerization occurs by the umklapp mechanism, in which the –NHAr moiety rotates in the molecular plane towards a linear C=N–N configuration and then proceeds to the other isomer. The (E, Z) isomerization is very slow at room temperature because the umklapp interconversion has high barriers (≈110 kJ/mol) despite the extended π electron delocalization present in the transition state.
The (E, Z) Isomerization of C-methoxycarbonyl-N-aryl Chlorohydrazones / G. Molteni, F. Cargnoni, R. Soave, A. Ponti. - In: CHEMISTRY. - ISSN 2624-8549. - 4:(2022 Dec), pp. 1624-1653. [10.3390/chemistry4040106]
The (E, Z) Isomerization of C-methoxycarbonyl-N-aryl Chlorohydrazones
G. MolteniPrimo
Methodology
;F. CargnoniSecondo
Investigation
;R. SoavePenultimo
Investigation
;
2022
Abstract
Since chlorohydrazones are planar molecules, it is in principle possible to distinguish between their E and Z stereoisomers. Chlorohydrazones are known to preferentially assume the Z configuration around the C=N double bond, and their (E, Z) isomerization is almost suppressed at room temperature. The lack, or rather the difficulty, of such an isomerization has been conveniently addressed by the in-depth theoretical study of seven C-methoxycarbonyl-N-aryl chlorohydrazones (aryl = phenyl, 4-chlorophenyl, 4-bromophenyl, 4-iodophenyl, 2-chlorophenyl, 2-bromophenyl, and 2-iodophenyl). DFT ωB97M-D4/cc-pVTZ calculations of these C-methoxycarbonyl-N-aryl chlorohydrazones, supported by the XRD determination of the molecular structure, provided a complete picture of the isomerization processes in the studied compounds. The analysis of the en- ergetics, molecular geometry, and electronic structure (the latter in the framework of the Quantum Theory of Atoms In Molecules) showed that the Z isomers are thermodynamically favored because, within the low-energy planar isomers with extensive π conjugation, the electrostatic interactions between the dipoles of the C–O, C–Cl, and N–H bonds overcome the stabilization induced by the N–H ··· O bond present in the E isomers. We confirmed that the (E, Z) isomerization occurs by the umklapp mechanism, in which the –NHAr moiety rotates in the molecular plane towards a linear C=N–N configuration and then proceeds to the other isomer. The (E, Z) isomerization is very slow at room temperature because the umklapp interconversion has high barriers (≈110 kJ/mol) despite the extended π electron delocalization present in the transition state.File | Dimensione | Formato | |
---|---|---|---|
chemistry-04-00106.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
2.9 MB
Formato
Adobe PDF
|
2.9 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.