We show that elliptic Calabi–Yau threefolds form a bounded family. We also show that the same result holds for minimal terminal threefolds of Kodaira dimension 2, upon fixing the rate of growth of pluricanonical forms and the degree of a multisection of the Iitaka fibration. Both of these hypotheses are necessary to prove the boundedness of such a family.

Boundedness of elliptic Calabi-Yau threefolds / S. Filipazzi, C.D. Hacon, R. Svaldi. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - 27:9(2025), pp. 3583-3650. [10.4171/JEMS/1467]

Boundedness of elliptic Calabi-Yau threefolds

R. Svaldi
Ultimo
2025

Abstract

We show that elliptic Calabi–Yau threefolds form a bounded family. We also show that the same result holds for minimal terminal threefolds of Kodaira dimension 2, upon fixing the rate of growth of pluricanonical forms and the degree of a multisection of the Iitaka fibration. Both of these hypotheses are necessary to prove the boundedness of such a family.
Calabi–Yau threefolds; elliptic fibrations; boundedness; minimal model program; Kawamata–Morrison cone conjecture;
Settore MAT/03 - Geometria
Settore MATH-02/B - Geometria
   Dalla geometria birazionale alle sue applicazioni: Minimal Model Program, spazi di moduli, e foliazioni algebriche. From birational geometry to its applications: Minimal Model Program, moduli spaces, and algebraic foliations.
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA

   Moduli spaces of stable varieties and applications
   MODSTABVAR
   European Commission
   Horizon 2020 Framework Programme
   804334

   FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
   National Science Foundation
   Directorate for Mathematical & Physical Sciences
   1952522

   Birational Algebraic Geometry in Characteristic Zero and Positive Characteristic
   National Science Foundation
   Directorate for Mathematical & Physical Sciences
   1801851
2025
3-giu-2024
https://ems.press/journals/jems/articles/14297859
Article (author)
File in questo prodotto:
File Dimensione Formato  
10.4171-jems-1467.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 705.23 kB
Formato Adobe PDF
705.23 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/946533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact