Given a projective contraction $\pi \colon X\rightarrow Z$ and a log canonical pair $(X, B)$ such that $-(K_X+B)$ is nef over a neighborhood of a closed point $z\in Z$, one can define an invariant, the complexity of $(X, B)$ over $z \in Z$, comparing the dimension of $X$ and the relative Picard number of $X/Z$ with the sum of the coefficients of those components of $B$ intersecting the fibre over $z$. We prove that the complexity of $(X,B)$ over $z\in Z$ is non-negative and that when it is zero then $(X,\lfloor B \rfloor) \rightarrow Z$ is formally isomorphic to a morphism of toric varieties around $z\in Z$. In particular, considering the case when $\pi$ is the identity morphism, we get a geometric characterization of singularities that are formally isomorphic to toric singularities. This gives a positive answer to a conjecture due to Shokurov.

A geometric characterization of toric singularities / J. Moraga, R. Svaldi. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 195:(2025 Mar 04), pp. 103260.1-103260.61. [10.1016/j.matpur.2024.103620]

A geometric characterization of toric singularities

R. Svaldi
Ultimo
2025

Abstract

Given a projective contraction $\pi \colon X\rightarrow Z$ and a log canonical pair $(X, B)$ such that $-(K_X+B)$ is nef over a neighborhood of a closed point $z\in Z$, one can define an invariant, the complexity of $(X, B)$ over $z \in Z$, comparing the dimension of $X$ and the relative Picard number of $X/Z$ with the sum of the coefficients of those components of $B$ intersecting the fibre over $z$. We prove that the complexity of $(X,B)$ over $z\in Z$ is non-negative and that when it is zero then $(X,\lfloor B \rfloor) \rightarrow Z$ is formally isomorphic to a morphism of toric varieties around $z\in Z$. In particular, considering the case when $\pi$ is the identity morphism, we get a geometric characterization of singularities that are formally isomorphic to toric singularities. This gives a positive answer to a conjecture due to Shokurov.
Etant donné une contraction projective $\pi \colon X \to Z$ et une paire log canonique $(X, B)$ telle que $-(K_X+B)$ soit numeriquement effectif sur un voisinage d'un point fermé $z \in Z$, on peut définir un invariant, la complexité de $(X, B)$ sur $z \in Z$, en comparant la dimension de $X$ et le nombre de Picard relatif de $X/Z$ avec la somme des coefficients des composantes de $B$ qui intersectent la fibre sur $z$. Nous demonstrons que, dans les hypothèses ci-dessus, la complexité de la paire logarithmique $(X, B)$ sur $z\in Z$ est non-négative, et que, lorsqu'elle est nulle, alors $(X, \lfloor B \rfloor) \to Z$ est formellement isomorphe à un morphisme de variétés toriques autour de $z \in Z$. En particulier, en considérant le cas où $\pi$ est le morphisme d'identité, on obtient une caractérisation géométrique des singularités qui sont formellement isomorphes aux singularités toriques, résolvant ainsi une conjecture de Shokurov.
Toric varieties; Toric singularities; Formal toric geometry; Cox ring
Settore MAT/03 - Geometria
Settore MATH-02/B - Geometria
   Boundedness and Moduli problems in birational geometry
   BoundModProbAG
   European Commission
   Horizon 2020 Framework Programme
   842071
4-mar-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
paper_jmpa2025.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/944768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact