We developed an analytical theoretical method to determine the microscopical structure of weakly to moderately sheared colloidal suspensions in dilute conditions. The microstructure is described by the static structure factor, obtained by solving the stationary two-body Smoluchowski advection-diffusion equation. The singularly perturbed partial differential equation problem is solved by performing an angular averaging over the extensional and compressing sectors and by the rigorous application of boundary-layer theory (intermediate asymptotics). This allows us to expand the solution to a higher order in P??clet with respect to previous methods. The scheme is independent of the type of interaction potential. We apply it to the example of charge-stabilized colloidal particles interacting via the repulsive Yukawa potential and study the distortion of the structure factor. It is predicted that the distortion is larger at small wave vectors k and its dependence on Pe is a simple power law. At increasing Pe, the main peak of the structure factor displays a broadening and shift toward lower k in the extensional sectors, which indicates shear-induced spreading out of particle correlations and neighbor particles locally being dragged away from the reference one. In the compressing sectors, instead, a narrowing and shift toward high k is predicted, reflecting shear-induced ordering near contact and concomitant depletion in the medium range. An overall narrowing of the peak is also predicted for the structure factor averaged over the whole solid angle. Calculations are also performed for hard spheres, showing good overall agreement with experimental data. It is also shown that the shear-induced structure factor distortion is orders of magnitude larger for the Yukawa repulsion than for the hard spheres.

Solution to the two-body Smoluchowski equation with shear flow for charge-stabilized colloids at low to moderate Péclet numbers / S. Riva, L. Banetta, A. Zaccone. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 105:5(2022 May 24), pp. 054606.1-054606.18. [10.1103/PhysRevE.105.054606]

Solution to the two-body Smoluchowski equation with shear flow for charge-stabilized colloids at low to moderate Péclet numbers

A. Zaccone
Ultimo
2022

Abstract

We developed an analytical theoretical method to determine the microscopical structure of weakly to moderately sheared colloidal suspensions in dilute conditions. The microstructure is described by the static structure factor, obtained by solving the stationary two-body Smoluchowski advection-diffusion equation. The singularly perturbed partial differential equation problem is solved by performing an angular averaging over the extensional and compressing sectors and by the rigorous application of boundary-layer theory (intermediate asymptotics). This allows us to expand the solution to a higher order in P??clet with respect to previous methods. The scheme is independent of the type of interaction potential. We apply it to the example of charge-stabilized colloidal particles interacting via the repulsive Yukawa potential and study the distortion of the structure factor. It is predicted that the distortion is larger at small wave vectors k and its dependence on Pe is a simple power law. At increasing Pe, the main peak of the structure factor displays a broadening and shift toward lower k in the extensional sectors, which indicates shear-induced spreading out of particle correlations and neighbor particles locally being dragged away from the reference one. In the compressing sectors, instead, a narrowing and shift toward high k is predicted, reflecting shear-induced ordering near contact and concomitant depletion in the medium range. An overall narrowing of the peak is also predicted for the structure factor averaged over the whole solid angle. Calculations are also performed for hard spheres, showing good overall agreement with experimental data. It is also shown that the shear-induced structure factor distortion is orders of magnitude larger for the Yukawa repulsion than for the hard spheres.
Settore FIS/03 - Fisica della Materia
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
24-mag-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
final_accepted.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 4.11 MB
Formato Adobe PDF
4.11 MB Adobe PDF Visualizza/Apri
PhysRevE.105.054606.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/944632
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact