Spiral arms have been observed in nearly a dozen protoplanetary discs in near-infrared scattered light and recently also in the submillimetre continuum. While one of the most compelling explanations is that they are driven by planetary or stellar companions, in all but one cases such companions have not yet been detected and there is even ambiguity on whether the planet should be located inside or outside the spirals. Here, we use 3D hydrodynamic simulations to study the morphology of spiral density waves launched by embedded planets taking into account the vertical temperature gradient, a natural consequence of stellar irradiation. Our simulations show that the pitch angle of the spirals in thermally stratified discs is the lowest in the disc mid-plane and increases towards the disc surface. We combine the hydrodynamic simulations with 3D radiative transfer calculations to predict that the pitch angle of planetary spirals observed in the near-infrared is higher than in the submillimetre. We also find that in both cases the spirals converge towards the planet. This provides a new powerful observational method to determine if the perturbing planet is inside or outside the spirals, as well as map the thermal stratification of the disc.

Spiral arms in thermally stratified protoplanetary discs / A. Juhasz, G.P. Rosotti. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 474:1(2018 Feb), pp. L32-L36. [10.1093/mnrasl/slx182]

Spiral arms in thermally stratified protoplanetary discs

G.P. Rosotti
2018

Abstract

Spiral arms have been observed in nearly a dozen protoplanetary discs in near-infrared scattered light and recently also in the submillimetre continuum. While one of the most compelling explanations is that they are driven by planetary or stellar companions, in all but one cases such companions have not yet been detected and there is even ambiguity on whether the planet should be located inside or outside the spirals. Here, we use 3D hydrodynamic simulations to study the morphology of spiral density waves launched by embedded planets taking into account the vertical temperature gradient, a natural consequence of stellar irradiation. Our simulations show that the pitch angle of the spirals in thermally stratified discs is the lowest in the disc mid-plane and increases towards the disc surface. We combine the hydrodynamic simulations with 3D radiative transfer calculations to predict that the pitch angle of planetary spirals observed in the near-infrared is higher than in the submillimetre. We also find that in both cases the spirals converge towards the planet. This provides a new powerful observational method to determine if the perturbing planet is inside or outside the spirals, as well as map the thermal stratification of the disc.
accretion, accretion discs; hydrodynamics; protoplanetary discs; circumstellar matter;
Settore FIS/05 - Astronomia e Astrofisica
   Hydrodynamical simulations of protoplanetary discs in the era of ALMA imaging
   DISCSIM
   European Commission
   SEVENTH FRAMEWORK PROGRAMME
   341137
feb-2018
14-nov-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
slx182.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1711.03559.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 4.12 MB
Formato Adobe PDF
4.12 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/943414
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 29
social impact