In the present paper, we propose a general logical approach for reasoning about probability functions, belief functions, lower probabilities and the corresponding duals. The logical setting we consider combines the modal logic S5, Łukasiewicz logic and an additional modality P that is applied to boolean formulas formalises probability functions. The modality P together with an S5 modal box provides a language rich enough to characterise probability, belief and lower probability theories.
Towards a Unified View on Logics for Uncertainty / E.A. Corsi, T. Flaminio, H. Hosni (LECTURE NOTES IN ARTIFICIAL INTELLIGENCE). - In: Scalable Uncertainty Management / [a cura di] F. Dupin de Saint-Cyr, M. Öztürk-Escoffier, N. Potyka. - [s.l] : Springer, 2022 Oct. - ISBN 978-3-031-18842-8. - pp. 329-337 (( Intervento presentato al 15. convegno SUM tenutosi a Paris nel 2022 [10.1007/978-3-031-18843-5_22].
Towards a Unified View on Logics for Uncertainty
E.A. Corsi
Primo
;H. HosniUltimo
2022
Abstract
In the present paper, we propose a general logical approach for reasoning about probability functions, belief functions, lower probabilities and the corresponding duals. The logical setting we consider combines the modal logic S5, Łukasiewicz logic and an additional modality P that is applied to boolean formulas formalises probability functions. The modality P together with an S5 modal box provides a language rich enough to characterise probability, belief and lower probability theories.File | Dimensione | Formato | |
---|---|---|---|
978-3-031-18843-5_22.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
411.58 kB
Formato
Adobe PDF
|
411.58 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.