This paper proposes a modeling scheme for cyber physical systems operating in non-stationary, small data environments. Unlike the traditional modeling logic, we introduce the few-shot learning paradigm, the operation of which is based on quantifying both similarities and dissimilarities. As such, we designed a suitable change detection mechanism able to reveal previously unknown operational states, which are incorporated in the dictionary online. We elaborate on spectrograms extracted from high-resolution ultrasound depth sensor timeseries, while the backbone of the proposed method is a Siamese Neural Network. The experimental scenario considers data representing liquid containers for fuel/water when the following five operational states are present: normal, accident, breakdown, sabotage, and cyber-attack. Thorough experiments were carried out assessing every aspect of the present framework and demonstrating its efficacy even when very few samples per class are available. In addition, we propose a probabilistic data selection scheme facilitating one-shot learning. Last but not least, responding to the wide requirement for interpretable AI, we explain the obtained predictions by examining the layer-wise activation maps.
Few-shot learning for modeling cyber physical systems in non-stationary environments / S. Ntalampiras, I. Potamitis. - In: NEURAL COMPUTING & APPLICATIONS. - ISSN 0941-0643. - (2022). [Epub ahead of print] [10.1007/s00521-022-07903-0]
Few-shot learning for modeling cyber physical systems in non-stationary environments
S. Ntalampiras
Primo
;
2022
Abstract
This paper proposes a modeling scheme for cyber physical systems operating in non-stationary, small data environments. Unlike the traditional modeling logic, we introduce the few-shot learning paradigm, the operation of which is based on quantifying both similarities and dissimilarities. As such, we designed a suitable change detection mechanism able to reveal previously unknown operational states, which are incorporated in the dictionary online. We elaborate on spectrograms extracted from high-resolution ultrasound depth sensor timeseries, while the backbone of the proposed method is a Siamese Neural Network. The experimental scenario considers data representing liquid containers for fuel/water when the following five operational states are present: normal, accident, breakdown, sabotage, and cyber-attack. Thorough experiments were carried out assessing every aspect of the present framework and demonstrating its efficacy even when very few samples per class are available. In addition, we propose a probabilistic data selection scheme facilitating one-shot learning. Last but not least, responding to the wide requirement for interpretable AI, we explain the obtained predictions by examining the layer-wise activation maps.File | Dimensione | Formato | |
---|---|---|---|
s00521-022-07903-0.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.