Finite automata whose computations can be reversed, at any point, by knowing the last k symbols read from the input, for a fixed k, are considered. These devices and their accepted languages are called k-reversible automata and k-reversible languages, respectively. The existence of k-reversible languages which are not (k - 1)-reversible is known, for each k > 1. This gives an infinite hierarchy of weakly irreversible languages, i.e., languages which are k-reversible for some k. Conditions characterizing the class of k-reversible languages, for each fixed k, and the class of weakly irreversible languages are obtained. From these conditions, a procedure that given a finite automaton decides if the accepted language is weakly or strongly (i.e., not weakly) irreversible is described. Furthermore, a construction which allows to transform any finite automaton which is not k-reversible, but which accepts a k-reversible language, into an equivalent k-reversible finite automaton, is presented.
Weakly and Strongly Irreversible Regular Languages / B. Guillon, G. Lavado, G. Pighizzini, L. Prigioniero. - In: INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE. - ISSN 0129-0541. - 33:3(2022), pp. 263-284. [10.1142/S0129054122410052]
Weakly and Strongly Irreversible Regular Languages
G. Pighizzini
;L. Prigioniero
2022
Abstract
Finite automata whose computations can be reversed, at any point, by knowing the last k symbols read from the input, for a fixed k, are considered. These devices and their accepted languages are called k-reversible automata and k-reversible languages, respectively. The existence of k-reversible languages which are not (k - 1)-reversible is known, for each k > 1. This gives an infinite hierarchy of weakly irreversible languages, i.e., languages which are k-reversible for some k. Conditions characterizing the class of k-reversible languages, for each fixed k, and the class of weakly irreversible languages are obtained. From these conditions, a procedure that given a finite automaton decides if the accepted language is weakly or strongly (i.e., not weakly) irreversible is described. Furthermore, a construction which allows to transform any finite automaton which is not k-reversible, but which accepts a k-reversible language, into an equivalent k-reversible finite automaton, is presented.File | Dimensione | Formato | |
---|---|---|---|
weakly.pdf
Open Access dal 09/04/2023
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
517.11 kB
Formato
Adobe PDF
|
517.11 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.