Multiple system atrophy (MSA) is a neurodegenerative disease characterized by autonomic failure, ataxia, and/or parkinsonism. Its prominent pathological alterations can be investigated using diffusion magnetic resonance imaging (dMRI), a technique that exploits the characteristics of water random motion inside brain tissue. The aim of this report was to review currently available literature on the application of dMRI in MSA and to describe microstructural abnormalities, diagnostic applications, and pathophysiological correlates. Sixty-four published studies involving microstructural investigation using dMRI in MSA were included. Widespread microstructural abnormalities of white matter were described, especially in the middle cerebellar peduncle, corticospinal tract, and hemispheric fibers. Gray matter degeneration was identified as well, with diffuse involvement of subcortical structures, especially in the putamina. Diagnostic applications of dMRI were mostly explored for the differential diagnosis between MSA parkinsonism and Parkinson's disease. Recently, machine learning algorithms for image processing and disease classification have demonstrated high diagnostic accuracy, showing potential for translation into clinical practice. To a lesser extent, clinical correlates of microstructural abnormalities have also been investigated, and abnormalities related to motor, ocular, and cognitive impairments were described. dMRI in MSA has contributed to in vivo identification of known pathological abnormalities. Translation into clinical practice of the latest advancements for the differential diagnosis between MSA and other forms of parkinsonism seems feasible. Current limitations involve the possibility of correctly diagnosing MSA in the very early stages, when the clinical diagnosis is most uncertain. Furthermore, pathophysiological correlates of microstructural abnormalities remain understudied. (c) 2022 International Parkinson and Movement Disorder Society.

Diffusion Magnetic Resonance Imaging Microstructural Abnormalities in Multiple System Atrophy: A Comprehensive Review / J. Pasquini, M.J. Firbank, R. Ceravolo, V. Silani, N. Pavese. - In: MOVEMENT DISORDERS. - ISSN 1531-8257. - (2022 Aug 29), pp. 1-23. [Epub ahead of print] [10.1002/mds.29195]

Diffusion Magnetic Resonance Imaging Microstructural Abnormalities in Multiple System Atrophy: A Comprehensive Review

V. Silani;
2022

Abstract

Multiple system atrophy (MSA) is a neurodegenerative disease characterized by autonomic failure, ataxia, and/or parkinsonism. Its prominent pathological alterations can be investigated using diffusion magnetic resonance imaging (dMRI), a technique that exploits the characteristics of water random motion inside brain tissue. The aim of this report was to review currently available literature on the application of dMRI in MSA and to describe microstructural abnormalities, diagnostic applications, and pathophysiological correlates. Sixty-four published studies involving microstructural investigation using dMRI in MSA were included. Widespread microstructural abnormalities of white matter were described, especially in the middle cerebellar peduncle, corticospinal tract, and hemispheric fibers. Gray matter degeneration was identified as well, with diffuse involvement of subcortical structures, especially in the putamina. Diagnostic applications of dMRI were mostly explored for the differential diagnosis between MSA parkinsonism and Parkinson's disease. Recently, machine learning algorithms for image processing and disease classification have demonstrated high diagnostic accuracy, showing potential for translation into clinical practice. To a lesser extent, clinical correlates of microstructural abnormalities have also been investigated, and abnormalities related to motor, ocular, and cognitive impairments were described. dMRI in MSA has contributed to in vivo identification of known pathological abnormalities. Translation into clinical practice of the latest advancements for the differential diagnosis between MSA and other forms of parkinsonism seems feasible. Current limitations involve the possibility of correctly diagnosing MSA in the very early stages, when the clinical diagnosis is most uncertain. Furthermore, pathophysiological correlates of microstructural abnormalities remain understudied. (c) 2022 International Parkinson and Movement Disorder Society.
diffusion; magnetic resonance imaging; multiple system atrophy
Settore MED/26 - Neurologia
Settore MED/37 - Neuroradiologia
29-ago-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
Pasquini J Mov Disord 2022.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 581.23 kB
Formato Adobe PDF
581.23 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/939402
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact