Mitochondrial fatty acid synthesis (mtFAS) is an evolutionarily conserved pathway essential for the function of the respiratory chain and several mitochondrial enzyme complexes. We report here a unique neurometabolic human disorder caused by defective mtFAS. Seven individuals from five unrelated families presented with childhood-onset dystonia, optic atrophy, and basal ganglia signal abnormalities on MRI. All affected individuals were found to harbor recessive mutations in MECR encoding the mitochondrial trans-2-enoyl-coenzyme A-reductase involved in human mtFAS. All six mutations are extremely rare in the general population, segregate with the disease in the families, and are predicted to be deleterious. The nonsense c.855T>G (p.Tyr285∗), c.247_250del (p.Asn83Hisfs∗4), and splice site c.830+2_830+3insT mutations lead to C-terminal truncation variants of MECR. The missense c.695G>A (p.Gly232Glu), c.854A>G (p.Tyr285Cys), and c.772C>T (p.Arg258Trp) mutations involve conserved amino acid residues, are located within the cofactor binding domain, and are predicted by structural analysis to have a destabilizing effect. Yeast modeling and complementation studies validated the pathogenicity of the MECR mutations. Fibroblast cell lines from affected individuals displayed reduced levels of both MECR and lipoylated proteins as well as defective respiration. These results suggest that mutations in MECR cause a distinct human disorder of the mtFAS pathway. The observation of decreased lipoylation raises the possibility of a potential therapeutic strategy.

MECR mutations cause childhood-onset dystonia and optic atrophy, a mitochondrial fatty acid synthesis disorder / G. Heimer, J.M. Keratar, L.G. Riley, S. Balasubramaniam, E. Eyal, L.P. Pietikainen, J.K. Hiltunen, D. Marek-Yagel, J. Hamada, A. Gregory, C. Rogers, P. Hogarth, M.A. Nance, N. Shalva, A. Veber, M. Tzadok, A. Nissenkorn, D. Tonduti, F. Renaldo, M.J. Bamshad, S.M. Leal, D.A. Nickerson, P. Anderson, M. Annable, E.M. Blue, K.J. Buckingham, J. Chin, J.X. Chong, R. Cornejo, C.P. Davis, C. Frazar, Z. He, G.P. Jarvik, G. Jimenez, E. Johanson, T. Kolar, S.A. Krauter, D. Luksic, C.T. Marvin, S. Mcgee, D.J. Mcgoldrick, K. Patterson, M. Perez, S.W. Phillips, J. Pijoan, P.D. Robertson, R. Santos-Cortez, A. Shankar, K. Slattery, K.M. Shively, D.L. Siegel, J.D. Smith, M. Tackett, G. Wang, M. Wegener, J.M. Weiss, R.I. Wernick, M.M. Wheeler, Q. Yi, I. Kraoua, C. Panteghini, L. Valletta, B. Garavaglia, M.J. Cowley, V. Gayevskiy, T. Roscioli, J.M. Silberstein, C. Hoffmann, A. Raas-Rothschild, V. Tiranti, Y. Anikster, J. Christodoulou, A.J. Kastaniotis, B. Ben-Zeev, S.J. Hayflick. - In: AMERICAN JOURNAL OF HUMAN GENETICS. - ISSN 0002-9297. - 99:6(2016 Dec), pp. 1229-1244. [10.1016/j.ajhg.2016.09.021]

MECR mutations cause childhood-onset dystonia and optic atrophy, a mitochondrial fatty acid synthesis disorder

D. Tonduti;
2016

Abstract

Mitochondrial fatty acid synthesis (mtFAS) is an evolutionarily conserved pathway essential for the function of the respiratory chain and several mitochondrial enzyme complexes. We report here a unique neurometabolic human disorder caused by defective mtFAS. Seven individuals from five unrelated families presented with childhood-onset dystonia, optic atrophy, and basal ganglia signal abnormalities on MRI. All affected individuals were found to harbor recessive mutations in MECR encoding the mitochondrial trans-2-enoyl-coenzyme A-reductase involved in human mtFAS. All six mutations are extremely rare in the general population, segregate with the disease in the families, and are predicted to be deleterious. The nonsense c.855T>G (p.Tyr285∗), c.247_250del (p.Asn83Hisfs∗4), and splice site c.830+2_830+3insT mutations lead to C-terminal truncation variants of MECR. The missense c.695G>A (p.Gly232Glu), c.854A>G (p.Tyr285Cys), and c.772C>T (p.Arg258Trp) mutations involve conserved amino acid residues, are located within the cofactor binding domain, and are predicted by structural analysis to have a destabilizing effect. Yeast modeling and complementation studies validated the pathogenicity of the MECR mutations. Fibroblast cell lines from affected individuals displayed reduced levels of both MECR and lipoylated proteins as well as defective respiration. These results suggest that mutations in MECR cause a distinct human disorder of the mtFAS pathway. The observation of decreased lipoylation raises the possibility of a potential therapeutic strategy.
Settore MED/39 - Neuropsichiatria Infantile
dic-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0002929716304347-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
MECR.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/938747
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 70
social impact