In this work, we propose a novel family of procedures for deriving a discrete counterpart (supported on a lattice) to a continuos probability distribution, based on the minimization of an appropriate distance between cumulative distribution functions.

Discretization of continuous probability distributions with application to the evaluation of aggregate risk / A. Barbiero, A. Hitaj. ((Intervento presentato al 11. convegno IECMSA 2022 International Eurasian conference on mathematical sciences and applications : August 29th - September, 1st tenutosi a Istanbul nel 2022.

Discretization of continuous probability distributions with application to the evaluation of aggregate risk

A. Barbiero
Primo
;
2022

Abstract

In this work, we propose a novel family of procedures for deriving a discrete counterpart (supported on a lattice) to a continuos probability distribution, based on the minimization of an appropriate distance between cumulative distribution functions.
22-set-2022
convolution, loss distribution, Panjer’s formula
Settore SECS-S/01 - Statistica
Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie
Sakarya University
Sakarya University of Applied Sciences
Yildiz Teknik Universitesi
Kirklareli Universitesi
Turkic World Mathematical Society
http://www.iecmsa.org/abstract/
Discretization of continuous probability distributions with application to the evaluation of aggregate risk / A. Barbiero, A. Hitaj. ((Intervento presentato al 11. convegno IECMSA 2022 International Eurasian conference on mathematical sciences and applications : August 29th - September, 1st tenutosi a Istanbul nel 2022.
Conference Object
File in questo prodotto:
File Dimensione Formato  
IECMSA2022AB.pdf

accesso riservato

Descrizione: abstract pubblicato; il book of abstracts completo è scaricabile liberamente da qui: http://www.iecmsa.org/media/dosyalar/2022_iecmsa_abstract_book_22_09_2022.pdf
Tipologia: Altro
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/938688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact