Olive oil production in Mediterranean countries represents a crucial market, especially for Spain, Italy, and Greece. However, although this sector plays a significant role in the European economy, it also leads to dramatic environmental consequences. Waste generated from olive oil production processes can be divided into solid waste and olive mill wastewaters (OMWW). These latter are characterized by high levels of organic compounds (i.e., polyphenols) that have been efficiently removed because of their hazardous environmental effects. Over the years, in this regard, several strategies have been primarily investigated, but all of them are characterized by advantages and weaknesses, which need to be overcome. Moreover, in recent years, each country has developed national legislation to regulate this type of waste, in line with the EU legislation. In this scenario, the present review provides an insight into the different methods used for treating olive mill wastewaters paying particular attention to the recent advances related to the development of more efficient photocatalytic approaches. In this regard, the most advanced photocatalysts should also be easily recoverable and considered valid alternatives to the currently used conventional systems. In this context, the optimization of innovative systems is today’s object of hard work by the research community due to the profound potential they can offer in real applications. This review provides an overview of OMWW treatment methods, highlighting advantages and disadvantages and discussing the still unresolved critical issues.

Olive mill wastewater remediation : from conventional approaches to photocatalytic processes by easily recoverable materials / M.G. Galloni, E. Ferrara, E. Falletta, C.L. Bianchi. - In: CATALYSTS. - ISSN 2073-4344. - 12:8(2022 Aug 21), pp. 923.1-923.24. [10.3390/catal12080923]

Olive mill wastewater remediation : from conventional approaches to photocatalytic processes by easily recoverable materials

M.G. Galloni
Primo
;
E. Falletta
Penultimo
;
C.L. Bianchi
Ultimo
2022

Abstract

Olive oil production in Mediterranean countries represents a crucial market, especially for Spain, Italy, and Greece. However, although this sector plays a significant role in the European economy, it also leads to dramatic environmental consequences. Waste generated from olive oil production processes can be divided into solid waste and olive mill wastewaters (OMWW). These latter are characterized by high levels of organic compounds (i.e., polyphenols) that have been efficiently removed because of their hazardous environmental effects. Over the years, in this regard, several strategies have been primarily investigated, but all of them are characterized by advantages and weaknesses, which need to be overcome. Moreover, in recent years, each country has developed national legislation to regulate this type of waste, in line with the EU legislation. In this scenario, the present review provides an insight into the different methods used for treating olive mill wastewaters paying particular attention to the recent advances related to the development of more efficient photocatalytic approaches. In this regard, the most advanced photocatalysts should also be easily recoverable and considered valid alternatives to the currently used conventional systems. In this context, the optimization of innovative systems is today’s object of hard work by the research community due to the profound potential they can offer in real applications. This review provides an overview of OMWW treatment methods, highlighting advantages and disadvantages and discussing the still unresolved critical issues.
olive oil production; olive mill; wastewater remediation; polyphenols; conventional photocatalysts; magnetic photocatalysts; floating devices; environmental remediation
Settore CHIM/04 - Chimica Industriale
Settore CHIM/03 - Chimica Generale e Inorganica
Settore CHIM/02 - Chimica Fisica
   Water decontamination by sunlight-driven floating photocatalytic systems (SUNFLOAT)
   SUNFLOAT
   VELUX STIFTUNG

   Piano di Sostegno alla Ricerca 2015-2017 - Linea 2 "Dotazione annuale per attività istituzionali" (anno 2021)
   UNIVERSITA' DEGLI STUDI DI MILANO
21-ago-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
catalysts-12-00923-v2.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/936349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact