We report first-principles calculations of the structure and electronic structure of nitrogen-doped TiO2anatase as a function of the dopant depth below the (101) surface. Specifically we evaluate the depth dependence of the formation energy for a few positions of the N impurity, considering for both substitutional and interstitial sites. We find a significant advantage of interstitial over substitutional positions, and a mild dependence of this formation energy on depth. The lengths of the bonds surrounding the impurity also evolve smoothly with depth. Regarding the electronic structure, we report the main features of the intragap impurity states and the hole-related spin magnetization density surrounding the N impurity.

Subsurface depth dependence of nitrogen doping in TiO2anatase: A DFT study / S. Anwer Kakil, H. Y abdullah, T.G. Abdullah, N. Manini. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - 33:20(2021), pp. 205703.1-205703.10. [10.1088/1361-648x/abce41]

Subsurface depth dependence of nitrogen doping in TiO2anatase: A DFT study

N. Manini
Ultimo
2021

Abstract

We report first-principles calculations of the structure and electronic structure of nitrogen-doped TiO2anatase as a function of the dopant depth below the (101) surface. Specifically we evaluate the depth dependence of the formation energy for a few positions of the N impurity, considering for both substitutional and interstitial sites. We find a significant advantage of interstitial over substitutional positions, and a mild dependence of this formation energy on depth. The lengths of the bonds surrounding the impurity also evolve smoothly with depth. Regarding the electronic structure, we report the main features of the intragap impurity states and the hole-related spin magnetization density surrounding the N impurity.
N doping; anatase; spin magnetization
Settore FIS/03 - Fisica della Materia
2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
TiO2_Ndoped_preprint.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 9.07 MB
Formato Adobe PDF
9.07 MB Adobe PDF Visualizza/Apri
Kakil_2021_J._Phys. _Condens._Matter_33_205703.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.96 MB
Formato Adobe PDF
2.96 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/935309
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact