Interest in the function of ataxia-telangiectasia-mutated protein (ATM) is extensively growing as evidenced by preclinical studies that continuously link ATM with new intracellular pathways. Here, we exploited Atm(+/-) and Atm(-/-) mice and demonstrate that cognitive defects are rescued by the delivery of the antidepressant Fluoxetine (Fluox). Fluox increases levels of the chloride intruder NKCC1 exclusively at hippocampal level suggesting an ATM context-specificity. A deeper investigation of synaptic composition unveils increased Gluk-1 and Gluk-5 subunit-containing kainate receptors (KARs) levels in the hippocampus, but not in the cortex, of Atm(+/-) and Atm(-/-) mice. Analysis of postsynaptic fractions and confocal studies indicates that KARs are presynaptic while in vitro and ex vivo electrophysiology that are fully active. These changes are (i) linked to KCC2 activity, as the KCC2 blockade in Atm(+/-) developing neurons results in reduced KARs levels and (ii) developmental regulated. Indeed, the pharmacological inhibition of ATM kinase in adults produces different changes as identified by RNA-seq investigation. Our data display how ATM affects both inhibitory and excitatory neurotransmission, extending its role to a variety of neurological and psychiatric disorders.

ATM rules neurodevelopment and glutamatergic transmission in the hippocampus but not in the cortex / E. Focchi, C.M. Cambria, L. Pizzamiglio, L. Murru, S.C. Pelucchi, L. D'Andrea, S. Piazza, L. Mattioni, M. Passafaro, E. Marcello, G. Provenzano, F. Antonucci. - In: CELL DEATH & DISEASE. - ISSN 2041-4889. - 13:7(2022), pp. 616.1-616.13. [10.1038/s41419-022-05038-7]

ATM rules neurodevelopment and glutamatergic transmission in the hippocampus but not in the cortex

E. Focchi
Primo
;
C.M. Cambria
Secondo
;
L. Pizzamiglio;S.C. Pelucchi;L. D'Andrea;E. Marcello;F. Antonucci
Ultimo
2022

Abstract

Interest in the function of ataxia-telangiectasia-mutated protein (ATM) is extensively growing as evidenced by preclinical studies that continuously link ATM with new intracellular pathways. Here, we exploited Atm(+/-) and Atm(-/-) mice and demonstrate that cognitive defects are rescued by the delivery of the antidepressant Fluoxetine (Fluox). Fluox increases levels of the chloride intruder NKCC1 exclusively at hippocampal level suggesting an ATM context-specificity. A deeper investigation of synaptic composition unveils increased Gluk-1 and Gluk-5 subunit-containing kainate receptors (KARs) levels in the hippocampus, but not in the cortex, of Atm(+/-) and Atm(-/-) mice. Analysis of postsynaptic fractions and confocal studies indicates that KARs are presynaptic while in vitro and ex vivo electrophysiology that are fully active. These changes are (i) linked to KCC2 activity, as the KCC2 blockade in Atm(+/-) developing neurons results in reduced KARs levels and (ii) developmental regulated. Indeed, the pharmacological inhibition of ATM kinase in adults produces different changes as identified by RNA-seq investigation. Our data display how ATM affects both inhibitory and excitatory neurotransmission, extending its role to a variety of neurological and psychiatric disorders.
Settore BIO/14 - Farmacologia
2022
16-lug-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
Focchi et al, 2022.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.15 MB
Formato Adobe PDF
4.15 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/934351
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact