The study of network supported opinion dynamics in large groups of autonomous agents is attracting an increasing interest during the last years. In this paper, we proposed the use of the recent graphon theory to model and simulate an interacting system. Specifically, we prove the existence and uniqueness of the limit problem that approximates a very large network made by homogeneous groups of agents. The significant new example is the mean field analysis deduced from the graphon limit systems in the case of piecewise constant graphon.

Opinion dynamics on graphon: The piecewise constant case / G. Aletti, G. Naldi. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - 133:(2022 Nov), pp. 108227.1-108227.7. [10.1016/j.aml.2022.108227]

Opinion dynamics on graphon: The piecewise constant case

G. Aletti
Primo
;
G. Naldi
Ultimo
2022

Abstract

The study of network supported opinion dynamics in large groups of autonomous agents is attracting an increasing interest during the last years. In this paper, we proposed the use of the recent graphon theory to model and simulate an interacting system. Specifically, we prove the existence and uniqueness of the limit problem that approximates a very large network made by homogeneous groups of agents. The significant new example is the mean field analysis deduced from the graphon limit systems in the case of piecewise constant graphon.
Dynamics on networks; Graphon; Mean field; Opinion dynamics;
Settore MAT/08 - Analisi Numerica
Settore MAT/06 - Probabilita' e Statistica Matematica
nov-2022
Centro di Ricerca Interdisciplinare su Modellistica Matematica, Analisi Statistica e Simulazione Computazionale per la Innovazione Scientifica e Tecnologica ADAMSS
Article (author)
File in questo prodotto:
File Dimensione Formato  
Opinion_Graphon_AN_R1_ARXIV.pdf

Open Access dal 02/11/2024

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 324.67 kB
Formato Adobe PDF
324.67 kB Adobe PDF Visualizza/Apri
1-s2.0-S0893965922001811-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 686.8 kB
Formato Adobe PDF
686.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/932378
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact