Noble gases are usually seen as utterly inert, likewise gold, which is typically conceived as the noblest of all metals. While one may expect that noble gases bind to gold via dispersion interactions only, strong bonds can be formed between noble gas atoms and small gold clusters. We combine mass spectrometry, infrared spectroscopy, and density functional theory calculations to address the bonding nature between Aun+ (n ≤ 4) clusters and Ar, Kr, and Xe. We unambiguously determine the geometries and quantitatively uncover the bonding nature in AunNgm+ (Ng = Ar, Kr, Xe) complexes. Each Au cluster can form covalent bonds with atop bound noble gas atoms, with strengths that increase with the noble gas atomic radius. This is demonstrated by calculated adsorption energies, Bader electron charges, and analysis of the electron density. The covalent bonding character, however, is limited to the atop-coordinated Ng atoms.

Bonding Nature between Noble Gases and Small Gold Clusters / P. Ferrari, L. Delgado-Callico, O.V. Lushchikova, M. Bejide, F.J. Wensink, J.M. Bakker, F. Baletto, E. Janssens. - In: THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS. - ISSN 1948-7185. - 13:19(2022), pp. 4309-4314. [10.1021/acs.jpclett.2c00738]

Bonding Nature between Noble Gases and Small Gold Clusters

F. Baletto;
2022

Abstract

Noble gases are usually seen as utterly inert, likewise gold, which is typically conceived as the noblest of all metals. While one may expect that noble gases bind to gold via dispersion interactions only, strong bonds can be formed between noble gas atoms and small gold clusters. We combine mass spectrometry, infrared spectroscopy, and density functional theory calculations to address the bonding nature between Aun+ (n ≤ 4) clusters and Ar, Kr, and Xe. We unambiguously determine the geometries and quantitatively uncover the bonding nature in AunNgm+ (Ng = Ar, Kr, Xe) complexes. Each Au cluster can form covalent bonds with atop bound noble gas atoms, with strengths that increase with the noble gas atomic radius. This is demonstrated by calculated adsorption energies, Bader electron charges, and analysis of the electron density. The covalent bonding character, however, is limited to the atop-coordinated Ng atoms.
Settore FIS/03 - Fisica della Materia
Article (author)
File in questo prodotto:
File Dimensione Formato  
Ferrari-JPCL_proof.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/932111
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact