Imidazo[1,5-a]pyridine is a stable scaffold, widely used for the development of emissive compounds in many application fields (e.g., optoelectronics, coordination chemistry, sensors, chemical biology). Their compact shape along with remarkable photophysical properties make them suitable candidates as cell membrane probes. The study of the membrane dynamics, hydration, and fluidity is of importance to monitor the cellular health and to explore crucial biochemical pathways. In this context, five imidazo[1,5-a]pyridine-based fluorophores were synthesized according to a one-pot cyclization between an aromatic ketone and benzaldehyde in the presence of ammonium acetate and acetic acid. The photophysical features of prepared compounds were investigated in several organic solvents and probes 2–4 exhibited the greatest solvatochromic behavior, resulting in a higher suitability as membrane probes. Their interaction with liposomes as artificial membrane model was tested showing a successful intercalation of the probes in the lipid bilayer. Kinetic experiments were carried out and the lipidic phase influence on the photophysical features was evaluated through temperature-dependent experiments. The results herein reported encourage further investigations on the use of imidazo[1,5-a]pyridine scaffold as fluorescent membrane probes.

Imidazo[1,5-a]pyridine-Based Fluorescent Probes: A Photophysical Investigation in Liposome Models / G. Renno, F. Cardano, G. Volpi, C. Barolo, G. Viscardi, A. Fin. - In: MOLECULES. - ISSN 1420-3049. - 27:12(2022 Jun 16), pp. 3856.1-3856.14. [10.3390/molecules27123856]

Imidazo[1,5-a]pyridine-Based Fluorescent Probes: A Photophysical Investigation in Liposome Models

F. Cardano
Secondo
;
2022

Abstract

Imidazo[1,5-a]pyridine is a stable scaffold, widely used for the development of emissive compounds in many application fields (e.g., optoelectronics, coordination chemistry, sensors, chemical biology). Their compact shape along with remarkable photophysical properties make them suitable candidates as cell membrane probes. The study of the membrane dynamics, hydration, and fluidity is of importance to monitor the cellular health and to explore crucial biochemical pathways. In this context, five imidazo[1,5-a]pyridine-based fluorophores were synthesized according to a one-pot cyclization between an aromatic ketone and benzaldehyde in the presence of ammonium acetate and acetic acid. The photophysical features of prepared compounds were investigated in several organic solvents and probes 2–4 exhibited the greatest solvatochromic behavior, resulting in a higher suitability as membrane probes. Their interaction with liposomes as artificial membrane model was tested showing a successful intercalation of the probes in the lipid bilayer. Kinetic experiments were carried out and the lipidic phase influence on the photophysical features was evaluated through temperature-dependent experiments. The results herein reported encourage further investigations on the use of imidazo[1,5-a]pyridine scaffold as fluorescent membrane probes.
imidazo[1,5-a]pyridine; fluorescence; large Stokes shift; liposome; membrane probes;
Settore CHIM/06 - Chimica Organica
16-giu-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
molecules-27-03856 (2).pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.22 MB
Formato Adobe PDF
3.22 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/932044
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact