We provide a stochastic representation for a general class of viscous Hamilton-Jacobi (HJ) equations, which has convex and superlinear nonlinearity in its gradient term, via a type of backward stochastic differential equation (BSDE) with constraint in the martingale part. We compare our result with the classical representation in terms of (super)quadratic BSDEs, and show in particular that existence of a viscosity solution to the viscous HJ equation can be obtained under more general growth assumptions on the coefficients, including both unbounded diffusion coefficient and terminal data.

BSDEs with diffusion constraint and viscous Hamilton–Jacobi equations with unbounded data / A. Cosso, H. Pham, H. Xing. - In: ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES. - ISSN 0246-0203. - 53:4(2017 Nov 20), pp. 1528-1547. [10.1214/16-AIHP762]

BSDEs with diffusion constraint and viscous Hamilton–Jacobi equations with unbounded data

A. Cosso
Primo
;
2017

Abstract

We provide a stochastic representation for a general class of viscous Hamilton-Jacobi (HJ) equations, which has convex and superlinear nonlinearity in its gradient term, via a type of backward stochastic differential equation (BSDE) with constraint in the martingale part. We compare our result with the classical representation in terms of (super)quadratic BSDEs, and show in particular that existence of a viscosity solution to the viscous HJ equation can be obtained under more general growth assumptions on the coefficients, including both unbounded diffusion coefficient and terminal data.
Nous donnons une représentation stochastique pour une classe générale d’équations d’Hamilton-Jacobi (HJ) visqueuses, convexes et super-nonlinéaires, au moyen d’équations différentielles stochastiques rétrogrades (EDSR) avec contraintes sur la partie martingale. Nous comparons nos résultats avec la représentation classique en termes d’EDSR (super)quadratiques, et montrons notamment que l’existence d’une solution de viscosité à l’équation visqueuse de HJ peut être obtenue sous des conditions de croissance plus générales, incluant des coefficients et une donnée terminale non bornées.
Backward stochastic differential equation (BSDE); Randomization; Viscous Hamilton-Jacobi equation; Deterministic KPZ equation; Nonlinear Feynman-Kac formula
Settore MAT/06 - Probabilita' e Statistica Matematica
20-nov-2017
https://projecteuclid.org/euclid.aihp/1511773717
Article (author)
File in questo prodotto:
File Dimensione Formato  
2017 - Cosso, Pham, Xing - AIHP762.pdf

accesso aperto

Descrizione: Published manuscript
Tipologia: Publisher's version/PDF
Dimensione 297.51 kB
Formato Adobe PDF
297.51 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/931989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact