Path-dependent PDEs (PPDEs) are natural objects to study when one deals with non Markovian models. Recently, after the intro- duction of the so-called pathwise (or functional or Dupire) calculus (see [15]), in the case of finite-dimensional underlying space various papers have been devoted to studying the well-posedness of such kind of equations, both from the point of view of regular solutions (see e.g. [15, 9]) and viscosity solutions (see e.g. [16]). In this paper, motivated by the study of models driven by path-dependent stochastic PDEs, we give a first well-posedness result for viscosity solutions of PPDEs when the underlying space is a separable Hilbert space. We also observe that, in contrast with the finite-dimensional case, our well-posedness result, even in the Markovian case, applies to equations which cannot be treated, up to now, with the known theory of viscosity solutions.
Path-dependent equations and viscosity solutions in infinite dimension / A. Cosso, S. Federico, F. Gozzi, M. Rosestolato, N. Touzi. - In: ANNALS OF PROBABILITY. - ISSN 0091-1798. - 46:1(2018 Jan), pp. 126-174. [10.1214/17-AOP1181]
Path-dependent equations and viscosity solutions in infinite dimension
A. Cosso
Primo
;
2018
Abstract
Path-dependent PDEs (PPDEs) are natural objects to study when one deals with non Markovian models. Recently, after the intro- duction of the so-called pathwise (or functional or Dupire) calculus (see [15]), in the case of finite-dimensional underlying space various papers have been devoted to studying the well-posedness of such kind of equations, both from the point of view of regular solutions (see e.g. [15, 9]) and viscosity solutions (see e.g. [16]). In this paper, motivated by the study of models driven by path-dependent stochastic PDEs, we give a first well-posedness result for viscosity solutions of PPDEs when the underlying space is a separable Hilbert space. We also observe that, in contrast with the finite-dimensional case, our well-posedness result, even in the Markovian case, applies to equations which cannot be treated, up to now, with the known theory of viscosity solutions.File | Dimensione | Formato | |
---|---|---|---|
Cosso, Federico, Gozzi, Rosestolato, Touzi - AOP1181.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
457.13 kB
Formato
Adobe PDF
|
457.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.