The possibility to accelerate electron beams to ultra-relativistic velocities over short distances by using plasma-based technology holds the potential for a revolution in the field of particle accelerators1-4. The compact nature of plasma-based accelerators would allow the realization of table-top machines capable of driving a free-electron laser (FEL)5, a formidable tool to investigate matter at the sub-atomic level by generating coherent light pulses with sub-ångström wavelengths and sub-femtosecond durations6,7. So far, however, the high-energy electron beams required to operate FELs had to be obtained through the use of conventional large-size radio-frequency (RF) accelerators, bound to a sizeable footprint as a result of their limited accelerating fields. Here we report the experimental evidence of FEL lasing by a compact (3-cm) particle-beam-driven plasma accelerator. The accelerated beams are completely characterized in the six-dimensional phase space and have high quality, comparable with state-of-the-art accelerators8. This allowed the observation of narrow-band amplified radiation in the infrared range with typical exponential growth of its intensity over six consecutive undulators. This proof-of-principle experiment represents a fundamental milestone in the use of plasma-based accelerators, contributing to the development of next-generation compact facilities for user-oriented applications9.

Free-electron lasing with compact beam-driven plasma wakefield accelerator / R. Pompili, D. Alesini, M.P. Anania, S. Arjmand, M. Behtouei, M. Bellaveglia, A. Biagioni, B. Buonomo, F. Cardelli, M. Carpanese, E. Chiadroni, A. Cianchi, G. Costa, A. Del Dotto, M. Del Giorno, F. Dipace, A. Doria, F. Filippi, M. Galletti, L. Giannessi, A. Giribono, P. Iovine, V. Lollo, A. Mostacci, F. Nguyen, M. Opromolla, E. Di Palma, L. Pellegrino, A. Petralia, V. Petrillo, L. Piersanti, G. Di Pirro, S. Romeo, A.R. Rossi, J. Scifo, A. Selce, V. Shpakov, A. Stella, C. Vaccarezza, F. Villa, A. Zigler &, M. Ferrario. - In: NATURE PHYSICS. - ISSN 1745-2481. - 605:(2022 May 26), pp. 659-662. [10.1038/s41586-022-04589-1]

Free-electron lasing with compact beam-driven plasma wakefield accelerator

M. Opromolla;V. Petrillo;
2022

Abstract

The possibility to accelerate electron beams to ultra-relativistic velocities over short distances by using plasma-based technology holds the potential for a revolution in the field of particle accelerators1-4. The compact nature of plasma-based accelerators would allow the realization of table-top machines capable of driving a free-electron laser (FEL)5, a formidable tool to investigate matter at the sub-atomic level by generating coherent light pulses with sub-ångström wavelengths and sub-femtosecond durations6,7. So far, however, the high-energy electron beams required to operate FELs had to be obtained through the use of conventional large-size radio-frequency (RF) accelerators, bound to a sizeable footprint as a result of their limited accelerating fields. Here we report the experimental evidence of FEL lasing by a compact (3-cm) particle-beam-driven plasma accelerator. The accelerated beams are completely characterized in the six-dimensional phase space and have high quality, comparable with state-of-the-art accelerators8. This allowed the observation of narrow-band amplified radiation in the infrared range with typical exponential growth of its intensity over six consecutive undulators. This proof-of-principle experiment represents a fundamental milestone in the use of plasma-based accelerators, contributing to the development of next-generation compact facilities for user-oriented applications9.
Settore FIS/01 - Fisica Sperimentale
26-mag-2022
2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
s41586-022-04589-1.pdf

solo utenti autorizzati

Tipologia: Publisher's version/PDF
Dimensione 5.03 MB
Formato Adobe PDF
5.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/931687
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 42
social impact