In this paper, we prove a new gradient estimate for minimal graphs defined on domains of a complete manifold M with Ricci curvature bounded from below. This enables us to show that positive, entire minimal graphs on manifolds with non-negative Ricci curvature are constant and that complete, parabolic manifolds with Ricci curvature bounded from below have the half-space property. We avoid the need of sectional curvature bounds on M by exploiting a form of the Ahlfors–Khas’minskii duality in nonlinear potential theory.
Bernstein and half-space properties for minimal graphs under Ricci lower bounds / G. Colombo, M. Magliaro, L. Mari, M. Rigoli. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1687-0247. - 2022:23(2022 Dec), pp. 18256-18290. [10.1093/imrn/rnab342]
Bernstein and half-space properties for minimal graphs under Ricci lower bounds
G. ColomboPrimo
;L. Mari
;M. RigoliUltimo
2022
Abstract
In this paper, we prove a new gradient estimate for minimal graphs defined on domains of a complete manifold M with Ricci curvature bounded from below. This enables us to show that positive, entire minimal graphs on manifolds with non-negative Ricci curvature are constant and that complete, parabolic manifolds with Ricci curvature bounded from below have the half-space property. We avoid the need of sectional curvature bounds on M by exploiting a form of the Ahlfors–Khas’minskii duality in nonlinear potential theory.File | Dimensione | Formato | |
---|---|---|---|
1911_12054.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
938.14 kB
Formato
Adobe PDF
|
938.14 kB | Adobe PDF | Visualizza/Apri |
colombo-magliaro-mari-rigoli-rnab342.pdf
accesso riservato
Descrizione: Advance Access Publication
Tipologia:
Publisher's version/PDF
Dimensione
357.41 kB
Formato
Adobe PDF
|
357.41 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.