Motivated by the categorical-algebraic analysis of split epimorphisms of monoids, we study the concept of a special object induced by the intrinsic Schreier split epimorphisms in the context of a regular unital category with binary coproducts, comonadic covers and a natural imaginary splitting in the sense of our article [21]. In this context, each object comes naturally equipped with an imaginary magma structure. We analyse the intrinsic Schreier split epimorphisms in this setting, showing that their properties improve when the imaginary magma structures happen to be associative. We compare the intrinsic Schreier special objects with the protomodular objects, and characterise them in terms of the imaginary magma structure. We furthermore relate them to the Engel property in the case of groups and Lie algebras.
Intrinsic Schreier special objects / A. Montoli, D. Rodelo, T. VAN DER LINDEN. - In: THEORY AND APPLICATIONS OF CATEGORIES. - ISSN 1201-561X. - 36:18(2021), pp. 514-555.
Intrinsic Schreier special objects
A. MontoliPrimo
;
2021
Abstract
Motivated by the categorical-algebraic analysis of split epimorphisms of monoids, we study the concept of a special object induced by the intrinsic Schreier split epimorphisms in the context of a regular unital category with binary coproducts, comonadic covers and a natural imaginary splitting in the sense of our article [21]. In this context, each object comes naturally equipped with an imaginary magma structure. We analyse the intrinsic Schreier split epimorphisms in this setting, showing that their properties improve when the imaginary magma structures happen to be associative. We compare the intrinsic Schreier special objects with the protomodular objects, and characterise them in terms of the imaginary magma structure. We furthermore relate them to the Engel property in the case of groups and Lie algebras.File | Dimensione | Formato | |
---|---|---|---|
Montoli-Rodelo-Van der Linden, Intrinsic Schreier special objects.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
645.12 kB
Formato
Adobe PDF
|
645.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.