Connexin 43 (Cx43) exerts pivotal functions in articular chondrocytes (CH). It is involved in the communication among cells and between cells and the extracellular environment, and it contributes to the maintenance of the correct cell phenotype. The pro-inflammatory cytokine TNFα induces a reduction in Cx43 expression in CH. Here, we studied the dynamics of this decrease in expression. We evaluated Cx43 protein and gene expression and the involvement of C-terminal domain (CTD) cleavage and proteasomal degradation. Treatments able to counteract TNFα action were also examined, together with Gap Junction (GJ) functionality and Cx43 localization. TNFα induced a significant reduction in Cx43 expression already at day 1, and the down modulation reached a peak at day 3 (−46%). The decrease was linked to neither gene expression modulation nor CTD cleavage. Differently, the proteasome inhibitor MG132 reverted TNFα effect, indicating the involvement of proteasomal degradation in Cx43 reduction. In addition, the co-treatment with the anabolic factor TGF-β1 restored Cx43 levels. Cx43 decrease occurred both at the membrane level, where it partially influenced GJ communication, and in the nucleus. In conclusion, TNFα induced a rapid and lasting reduction in Cx43 expression mostly via the proteasome. The down modulation could be reverted by cartilage-protective factors such as MG132 and TGF-β1. These findings sug-gest a possible involvement of Cx43 perturbation during joint inflammation.

Dynamics of Connexin 43 Down Modulation in Human Articular Chondrocytes Stimulated by Tumor Necrosis Factor Alpha / E. Della Morte, S. Niada, C. Giannasi, L. Zagra, A. Brini. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - 23:10(2022 May 16), pp. 5575.1-5575.13. [10.3390/ijms23105575]

Dynamics of Connexin 43 Down Modulation in Human Articular Chondrocytes Stimulated by Tumor Necrosis Factor Alpha

S. Niada
Secondo
;
C. Giannasi;A. Brini
Ultimo
2022

Abstract

Connexin 43 (Cx43) exerts pivotal functions in articular chondrocytes (CH). It is involved in the communication among cells and between cells and the extracellular environment, and it contributes to the maintenance of the correct cell phenotype. The pro-inflammatory cytokine TNFα induces a reduction in Cx43 expression in CH. Here, we studied the dynamics of this decrease in expression. We evaluated Cx43 protein and gene expression and the involvement of C-terminal domain (CTD) cleavage and proteasomal degradation. Treatments able to counteract TNFα action were also examined, together with Gap Junction (GJ) functionality and Cx43 localization. TNFα induced a significant reduction in Cx43 expression already at day 1, and the down modulation reached a peak at day 3 (−46%). The decrease was linked to neither gene expression modulation nor CTD cleavage. Differently, the proteasome inhibitor MG132 reverted TNFα effect, indicating the involvement of proteasomal degradation in Cx43 reduction. In addition, the co-treatment with the anabolic factor TGF-β1 restored Cx43 levels. Cx43 decrease occurred both at the membrane level, where it partially influenced GJ communication, and in the nucleus. In conclusion, TNFα induced a rapid and lasting reduction in Cx43 expression mostly via the proteasome. The down modulation could be reverted by cartilage-protective factors such as MG132 and TGF-β1. These findings sug-gest a possible involvement of Cx43 perturbation during joint inflammation.
articular chondrocytes; Connexin 43; proteasome; TGF-β1; TNFα
Settore BIO/14 - Farmacologia
Settore BIO/13 - Biologia Applicata
16-mag-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
2022 IJMS Della Morte et al.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/928186
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact