AbstractThe relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.
Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery / T. Qiu, R. Andrus, M. Aravena, D. Ascoli, Y. Bergeron, R. Berretti, D. Berveiller, M. Bogdziewicz, T. Boivin, R. Bonal, D.C. Bragg, T. Caignard, R. Calama, J. Julio Camarero, C. Chang-Yang, N.L. Cleavitt, B. Courbaud, F. Courbet, T. Curt, A.J. Das, E. Daskalakou, H. Davi, N. Delpierre, S. Delzon, M. Dietze, S. Donoso Calderon, L. Dormont, J. Espelta, T.J. Fahey, W. Farfan-Rios, C.A. Gehring, G.S. Gilbert, G. Gratzer, C.H. Greenberg, Q. Guo, A. Hacket-Pain, A. Hampe, Q. Han, J. Hille Ris Lambers, K. Hoshizaki, I. Ibanez, J.F. Johnstone, V. Journ('(e)), D. Kabeya, C.L. Kilner, T. Kitzberger, J.M.H. Knops, R.K. Kobe, G. Kunstler, J.G.A. Lageard, J.M. Lamontagne, M. Ledwon, F. Lefevre, T. Leininger, J. Limousin, J.A. Lutz, D. Macias, E.J.B. Mcintire, C.M. Moore, E. Moran, R. Motta, J.A. Myers, T.A. Nagel, K. Noguchi, J. Ourcival, R. Parmenter, I.S. Pearse, I.M. Perez-Ramos, L. Piechnik, J. Poulsen, R. Poulton-Kamakura, M.D. Redmond, C.D. Reid, K.C. Rodman, F. Rodriguez-Sanchez, J.D. Sanguinetti, C. Lane Scher, W.H. Schlesinger, H. Schmidt Van Marle, B. Seget, S. Sharma, M. Silman, M.A. Steele, N.L. Stephenson, J.N. Straub, I. Sun, S. Sutton, J.J. Swenson, M. Swift, P.A. Thomas, M. Uriarte, G. Vacchiano, T.T. Veblen, A.V. Whipple, T.G. Whitham, A.P. Wion, B. Wright, S. Joseph Wright, K. Zhu, J.K. Zimmerman, R. Zlotin, M. Zywiec, J.S. Clark. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 13:1(2022 May 02), pp. 2381.1-2381.12. [10.1038/s41467-022-30037-9]
Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery
G. Vacchiano;
2022
Abstract
AbstractThe relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.File | Dimensione | Formato | |
---|---|---|---|
2022 Qiu.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
5.05 MB
Formato
Adobe PDF
|
5.05 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.