Stomatal movement is indispensable for plant growth and survival in response to environmental stimuli. Cytosolic Ca2+ elevation plays a crucial role in ABA-induced stomatal closure during drought stress; however, to what extent the Ca2+ movement across the plasma membrane from the apoplast to the cytosol contributes to this process still needs clarification. Here the authors identify (−)-catechin gallate (CG) and (−)-gallocatechin gallate (GCG), components of green tea, as inhibitors of voltage-dependent K+ channels which regulate K+ fluxes in Arabidopsis thaliana guard cells. In Arabidopsis guard cells CG/GCG prevent ABA-induced: i) membrane depolarization; ii) activation of Ca2+ permeable cation (ICa) channels; and iii) cytosolic Ca2+ transients. In whole Arabidopsis plants co-treatment with CG/GCG and ABA suppressed ABA-induced stomatal closure and surface temperature increase. Similar to ABA, CG/GCG inhibited stomatal closure is elicited by the elicitor peptide, flg22 but has no impact on dark-induced stomatal closure or light- and fusicoccin-induced stomatal opening, suggesting that the inhibitory effect of CG/GCG is associated with Ca2+-related signaling pathways. This study further supports the crucial role of ICa channels of the plasma membrane in ABA-induced stomatal closure. Moreover, CG and GCG represent a new tool for the study of abiotic or biotic stress-induced signal transduction pathways.

Green Tea Catechins, (−)‐Catechin Gallate, and (−)‐Gallocatechin Gallate are Potent Inhibitors of ABA‐Induced Stomatal Closure / K. Sato, S. Saito, K. Endo, M. Kono, T. Kakei, H. Taketa, M. Kato, S. Hamamoto, M. Grenzi, A. Costa, S. Munemasa, Y. Murata, Y. Ishimaru, N. Uozumi. - In: ADVANCED SCIENCE. - ISSN 2198-3844. - 9:21(2022), pp. 2201403.1-2201403.15. [10.1002/advs.202201403]

Green Tea Catechins, (−)‐Catechin Gallate, and (−)‐Gallocatechin Gallate are Potent Inhibitors of ABA‐Induced Stomatal Closure

M. Grenzi;A. Costa;
2022

Abstract

Stomatal movement is indispensable for plant growth and survival in response to environmental stimuli. Cytosolic Ca2+ elevation plays a crucial role in ABA-induced stomatal closure during drought stress; however, to what extent the Ca2+ movement across the plasma membrane from the apoplast to the cytosol contributes to this process still needs clarification. Here the authors identify (−)-catechin gallate (CG) and (−)-gallocatechin gallate (GCG), components of green tea, as inhibitors of voltage-dependent K+ channels which regulate K+ fluxes in Arabidopsis thaliana guard cells. In Arabidopsis guard cells CG/GCG prevent ABA-induced: i) membrane depolarization; ii) activation of Ca2+ permeable cation (ICa) channels; and iii) cytosolic Ca2+ transients. In whole Arabidopsis plants co-treatment with CG/GCG and ABA suppressed ABA-induced stomatal closure and surface temperature increase. Similar to ABA, CG/GCG inhibited stomatal closure is elicited by the elicitor peptide, flg22 but has no impact on dark-induced stomatal closure or light- and fusicoccin-induced stomatal opening, suggesting that the inhibitory effect of CG/GCG is associated with Ca2+-related signaling pathways. This study further supports the crucial role of ICa channels of the plasma membrane in ABA-induced stomatal closure. Moreover, CG and GCG represent a new tool for the study of abiotic or biotic stress-induced signal transduction pathways.
calcium oscillation; catechin gallate; drought stress; green tea; stomata
Settore BIO/04 - Fisiologia Vegetale
2022
https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202201403
Article (author)
File in questo prodotto:
File Dimensione Formato  
Sato et al 2022.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 6.41 MB
Formato Adobe PDF
6.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/926722
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact