Junctional adhesion molecule A (JAM-A) is a transmembrane protein that contributes to different biological process, including the epithelial to mesenchymal transition (EMT). Through an EMT profiler array, we explored the molecular players associated with human thyroid cancer progression and identified JAM-A as one of the genes mostly deregulated. The quantitative real-time polymerase chain reaction and immunohistochemistry analyses showed that downregulation of JAM-A occurred in anaplastic thyroid carcinoma (ATC) compared with normal thyroid (NT) and papillary thyroid carcinoma (PTC) tissues and correlated with extrathyroid infiltration, tumor size, and ATC histotype. In ATC cell lines, JAM-A restoration suppressed malignant hallmarks of transformation including cell proliferation, motility, and transendothelial migration. Accordingly, knockdown of JAM-A enhanced thyroid cancer cell proliferation and motility in PTC cells. Through the proteome profiler human phospho-kinase array, we demonstrated that higher expression of JAM-A was associated with a significant increased level of phosphorylation of p53 and GSK3 α/β proteins. In conclusion, our findings highlight a novel role of JAM-A in thyroid cancer progression and suggest that JAM-A restoration could have potential clinical relevance in thyroid cancer treatment.

Junctional adhesion molecule-A is down-regulated in anaplastic thyroid carcinomas and reduces cancer cell aggressiveness by modulating p53 and GSK3 α/β pathways / F.M. Orlandella, R.M. Mariniello, P.L.C. Iervolino, L. Auletta, A.E. De Stefano, C. Ugolini, A. Greco, P. Mirabelli, K. Pane, M. Franzese, M. Denaro, F. Basolo, G. Salvatore. - In: MOLECULAR CARCINOGENESIS. - ISSN 0899-1987. - 58:7(2019), pp. 1181-1193. [10.1002/mc.23001]

Junctional adhesion molecule-A is down-regulated in anaplastic thyroid carcinomas and reduces cancer cell aggressiveness by modulating p53 and GSK3 α/β pathways

L. Auletta;
2019

Abstract

Junctional adhesion molecule A (JAM-A) is a transmembrane protein that contributes to different biological process, including the epithelial to mesenchymal transition (EMT). Through an EMT profiler array, we explored the molecular players associated with human thyroid cancer progression and identified JAM-A as one of the genes mostly deregulated. The quantitative real-time polymerase chain reaction and immunohistochemistry analyses showed that downregulation of JAM-A occurred in anaplastic thyroid carcinoma (ATC) compared with normal thyroid (NT) and papillary thyroid carcinoma (PTC) tissues and correlated with extrathyroid infiltration, tumor size, and ATC histotype. In ATC cell lines, JAM-A restoration suppressed malignant hallmarks of transformation including cell proliferation, motility, and transendothelial migration. Accordingly, knockdown of JAM-A enhanced thyroid cancer cell proliferation and motility in PTC cells. Through the proteome profiler human phospho-kinase array, we demonstrated that higher expression of JAM-A was associated with a significant increased level of phosphorylation of p53 and GSK3 α/β proteins. In conclusion, our findings highlight a novel role of JAM-A in thyroid cancer progression and suggest that JAM-A restoration could have potential clinical relevance in thyroid cancer treatment.
epithelial-mesenchymal transition; junctional adhesion molecule A; motility; proliferation; thyroid carcinoma; Cell Adhesion Molecules; Cell Line, Tumor; Cell Movement; Cell Proliferation; Epithelial-Mesenchymal Transition; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; RNA Interference; RNA, Small Interfering; Receptors, Cell Surface; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Tumor Suppressor Protein p53
Settore MED/06 - Oncologia Medica
2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Molecular Carcinogenesis - 2019 - Orlandella - Junctional adhesion molecule‐A is down‐regulated in anaplastic thyroid.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/926390
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact