In the last few years it has been shown that the spontaneous self-assembly process of short DNA and RNA duplexes into liquid crystal ordering is a likely potential route that led to the formation of first nucleic acids able to support biological activities. In particular, it has been experimentally demonstrated that liquid crystal domains behave as suitable micro-reactors to trigger polymerization between the stacked and not initially chemically linked short nucleic acids. Even paired mononucleotides at high enough concentration exhibit liquid crystal ordering, unveiling the crucial role of Watson-Crick selectivity and stacking attractive interactions among base pairs. In such a possible prebiotic context, DNA sequences with both random nucleobases sequence and length are likely to be formed. Surprisingly, it has been shown that even random DNA sequence of fixed length can support liquid crystal ordering at high concentration. The aim of this PhD thesis is to extend the knowledge of DNA liquid crystals self-assembly in the following four directions. First, I explored the selectivity of interaction in nucleic acids solutions of random-sequence DNA oligomers of different length L. The combination of experimental results and a suitable developed theoretical model revealed a not negligible percentage of perfect duplexes. Second, I investigated the process that leads to the onset of the nematic liquid crystal phase in aqueous solutions of DNA duplexes. The combination of static light scattering experiments and computer simulations made possible the study of both aggregation and local ordering of DNA duplexes in the isotropic phase, where no positional order is developed, and in proximity of the isotropic-nematic phase boundary. This study gives an insight of the role on the development of local orientational order among DNA duplexes both far and in proximity of the isotropic-nematic phase boundary. Third, I studied the diffusion of short DNA duplexes with attractive and repulsive interactions in the isotropic phase as a function of temperature. I found that the temperature dependence of diffusion coefficients reflects via an Arrhenius law the interduplex attractive interactions, whereas diffusion of repulsive duplexes is partially well described in terms of repulsive hard spheres. Fourth, I investigated phase diagrams of mixtures of DNA single strands and duplexes with various polycations that show liquid-liquid phase separations. This phenomena leads to the onset of a concentrated but still liquid phase of polyelectrolytes, called coacervate, in a bulk phase where polyelectrolytes are diluted. The most surprising result I found, it is the insurgence of liquid crystals in coacervates with 12 nucleobases long random DNA oligomers and polylysine at different ionic strengths. I believe that this PhD thesis adds important pieces to the self-assembly of nucleic acids puzzle, and in particular it shows how randomness of nucleic acids is not an impasse to both hybridization of defectless duplexes and liquid crystal ordering.

SELECTIVE ASSEMBLY, PHASE TRANSITIONS AND MOLECULAR KINETICS OF DNA OLIGOMERS / S. Di Leo ; supervisor: T. Bellini ; co-supervisor: T. Fraccia. Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, 2022 May 10. 34. ciclo, Anno Accademico 2021.

SELECTIVE ASSEMBLY, PHASE TRANSITIONS AND MOLECULAR KINETICS OF DNA OLIGOMERS.

S. DI LEO
2022

Abstract

In the last few years it has been shown that the spontaneous self-assembly process of short DNA and RNA duplexes into liquid crystal ordering is a likely potential route that led to the formation of first nucleic acids able to support biological activities. In particular, it has been experimentally demonstrated that liquid crystal domains behave as suitable micro-reactors to trigger polymerization between the stacked and not initially chemically linked short nucleic acids. Even paired mononucleotides at high enough concentration exhibit liquid crystal ordering, unveiling the crucial role of Watson-Crick selectivity and stacking attractive interactions among base pairs. In such a possible prebiotic context, DNA sequences with both random nucleobases sequence and length are likely to be formed. Surprisingly, it has been shown that even random DNA sequence of fixed length can support liquid crystal ordering at high concentration. The aim of this PhD thesis is to extend the knowledge of DNA liquid crystals self-assembly in the following four directions. First, I explored the selectivity of interaction in nucleic acids solutions of random-sequence DNA oligomers of different length L. The combination of experimental results and a suitable developed theoretical model revealed a not negligible percentage of perfect duplexes. Second, I investigated the process that leads to the onset of the nematic liquid crystal phase in aqueous solutions of DNA duplexes. The combination of static light scattering experiments and computer simulations made possible the study of both aggregation and local ordering of DNA duplexes in the isotropic phase, where no positional order is developed, and in proximity of the isotropic-nematic phase boundary. This study gives an insight of the role on the development of local orientational order among DNA duplexes both far and in proximity of the isotropic-nematic phase boundary. Third, I studied the diffusion of short DNA duplexes with attractive and repulsive interactions in the isotropic phase as a function of temperature. I found that the temperature dependence of diffusion coefficients reflects via an Arrhenius law the interduplex attractive interactions, whereas diffusion of repulsive duplexes is partially well described in terms of repulsive hard spheres. Fourth, I investigated phase diagrams of mixtures of DNA single strands and duplexes with various polycations that show liquid-liquid phase separations. This phenomena leads to the onset of a concentrated but still liquid phase of polyelectrolytes, called coacervate, in a bulk phase where polyelectrolytes are diluted. The most surprising result I found, it is the insurgence of liquid crystals in coacervates with 12 nucleobases long random DNA oligomers and polylysine at different ionic strengths. I believe that this PhD thesis adds important pieces to the self-assembly of nucleic acids puzzle, and in particular it shows how randomness of nucleic acids is not an impasse to both hybridization of defectless duplexes and liquid crystal ordering.
10-mag-2022
supervisor: T. Bellini ; co-supervisor: T. Fraccia
Dipartimento di Biotecnologie Mediche e Medicina Traslazionale
English
34
2021
FISICA, ASTROFISICA E FISICA APPLICATA
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Ricerca applicata
Pubblicazione scientifica
Molecular interactions; Molecular mixtures; DNA pairing statistics; Random sequence DNA; Melting temperature; pretransitional phenomena; aggregation number; Molecular diffusion; liquid-liquid crystal phase separation;
BELLINI, TOMMASO GIOVANNI
BELLINI, TOMMASO GIOVANNI
Doctoral Thesis
Prodotti della ricerca::Tesi di dottorato
-2.0
open
Università degli Studi di Milano
info:eu-repo/semantics/doctoralThesis
1
S. DI LEO
SELECTIVE ASSEMBLY, PHASE TRANSITIONS AND MOLECULAR KINETICS OF DNA OLIGOMERS / S. Di Leo ; supervisor: T. Bellini ; co-supervisor: T. Fraccia. Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, 2022 May 10. 34. ciclo, Anno Accademico 2021.
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R12267_02.pdf

accesso aperto

Descrizione: Research Activity Report PhD
Tipologia: Tesi di dottorato completa
Dimensione 397.59 kB
Formato Adobe PDF
397.59 kB Adobe PDF Visualizza/Apri
phd_unimi_R12267_01.pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia: Tesi di dottorato completa
Dimensione 3.39 MB
Formato Adobe PDF
3.39 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/923222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact