Biosensors are aimed at detecting tiny physical and chemical stimuli in biological systems. Physical forces are ubiquitous, being implied in all cellular processes, including cell adhesion, migration, and differentiation. Given the strong interplay between cells and their microenvironment, the extracellular matrix (ECM) and the structural and mechanical properties of the ECM play an important role in the transmission of external stimuli to single cells within the tissue. Vice versa, cells themselves also use self-generated forces to probe the biophysical properties of the ECM. ECM mechanics influence cell fate, regulate tissue development, and show peculiar features in health and disease conditions of living organisms. Force sensing in biological systems is therefore crucial to dissecting and understanding complex biological processes, such as mechanotransduction. Atomic Force Microscopy (AFM), which can both sense and apply forces at the nanoscale, with sub-nanonewton sensitivity, represents an enabling technology and a crucial experimental tool in biophysics and mechanobiology. In this work, we report on the application of AFM to the study of biomechanical fingerprints of different components of biological systems, such as the ECM, the whole cell, and cellular components, such as the nucleus, lamellipodia and the glycocalyx. We show that physical observables such as the (spatially resolved) Young’s Modulus (YM) of elasticity of ECMs or cells, and the effective thickness and stiffness of the glycocalyx, can be quantitatively characterized by AFM. Their modification can be correlated to changes in the microenvironment, physio-pathological conditions, or gene regulation.

Force Sensing on Cells and Tissues by Atomic Force Microscopy / H. Holuigue, E. Lorenc, M. Chighizola, C. Schulte, L. Varinelli, M. Deraco, M. Guaglio, M. Gariboldi, A. Podesta. - In: SENSORS. - ISSN 1424-8220. - 22:6(2022), pp. 2197.1-2197.17. [10.3390/s22062197]

Force Sensing on Cells and Tissues by Atomic Force Microscopy

H. Holuigue;E. Lorenc;M. Chighizola;C. Schulte;A. Podesta
Ultimo
2022

Abstract

Biosensors are aimed at detecting tiny physical and chemical stimuli in biological systems. Physical forces are ubiquitous, being implied in all cellular processes, including cell adhesion, migration, and differentiation. Given the strong interplay between cells and their microenvironment, the extracellular matrix (ECM) and the structural and mechanical properties of the ECM play an important role in the transmission of external stimuli to single cells within the tissue. Vice versa, cells themselves also use self-generated forces to probe the biophysical properties of the ECM. ECM mechanics influence cell fate, regulate tissue development, and show peculiar features in health and disease conditions of living organisms. Force sensing in biological systems is therefore crucial to dissecting and understanding complex biological processes, such as mechanotransduction. Atomic Force Microscopy (AFM), which can both sense and apply forces at the nanoscale, with sub-nanonewton sensitivity, represents an enabling technology and a crucial experimental tool in biophysics and mechanobiology. In this work, we report on the application of AFM to the study of biomechanical fingerprints of different components of biological systems, such as the ECM, the whole cell, and cellular components, such as the nucleus, lamellipodia and the glycocalyx. We show that physical observables such as the (spatially resolved) Young’s Modulus (YM) of elasticity of ECMs or cells, and the effective thickness and stiffness of the glycocalyx, can be quantitatively characterized by AFM. Their modification can be correlated to changes in the microenvironment, physio-pathological conditions, or gene regulation.
Atomic Force Microscopy; Biosensors; Colloidal probe; Extracellular matrix; Glycocalyx; Mechanobiology
Settore FIS/03 - Fisica della Materia
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
   Biomechanics in health and disease: advanced physical tools for innovative early diagnosis (Phys2BioMed)
   Phys2BioMed
   EUROPEAN COMMISSION
   H2020
   812772

   Novel precision technological platforms to promote non-invasive early diagnosis, eradication and prevention of cancer relapse: proof of concept in the bladder carcinoma (EDIT)
   EDIT
   EUROPEAN COMMISSION
   H2020
   801126

   Biomechanics in health and disease: advanced physical tools for innovative early diagnosis (Phys2BioMed)
   Phys2BioMed
   EUROPEAN COMMISSION
   H2020
   812772
2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
sensors-22-02197-v2.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 37.14 MB
Formato Adobe PDF
37.14 MB Adobe PDF Visualizza/Apri
sensors-22-02197-v2_compressed.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 413.6 kB
Formato Adobe PDF
413.6 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/922569
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact