We establish existence and uniqueness of an optimal control for a family of McKean- Vlasov (mean-field) type ergodic optimal control problems with linear control, and quadratic depen dence on control of the cost function. We propose an N-particles Markovian optimal control problem approximating the McKean-Vlasov one and prove the convergence in relative entropy, total variation of the law of the former to the law of the latter when N goes to infinity.

Mean-field limit for a class of ergodic stochastic control problems / S. Albeverio, F.C. De Vecchi, A. Romano, S. Ugolini. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 1095-7138. - 60:1(2022 Feb 15). [10.1137/20M1363479]

Mean-field limit for a class of ergodic stochastic control problems

S. Ugolini
Ultimo
2022

Abstract

We establish existence and uniqueness of an optimal control for a family of McKean- Vlasov (mean-field) type ergodic optimal control problems with linear control, and quadratic depen dence on control of the cost function. We propose an N-particles Markovian optimal control problem approximating the McKean-Vlasov one and prove the convergence in relative entropy, total variation of the law of the former to the law of the latter when N goes to infinity.
mean-field control, ergodic optimal control, McKean-Vlasov limit, de Finetti theorem, strong Kac's chaos, convergence of probability measures on path space;
Settore MAT/06 - Probabilita' e Statistica Matematica
15-feb-2022
2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
2003.06469.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 494.35 kB
Formato Adobe PDF
494.35 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/921774
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact