Free-Electron Lasers are a rapidly growing field for advanced science and applications, and worldwide facilities for intense field generation, characterization and usage are becoming increasingly popular due to their peculiarities, including extremely bright, coherent, wide band tunable ultra-short pulses which are not achievable with other techniques up to now. In this review we give a thorough survey of the latest advances in the Free-Electron Laser-based field generation and detection methodologies and then present the main characteristics of a future THz/IR source, named TerRa@BriXSinO, based on a superconducting linear accelerator. The foreseen source is strongly monochromatic, with a bandwidth of 1% or smaller, highly coherent both transversally and longitudinally, with extreme versatility and high frequency tunability. After introducing the most recent and novel FEL-assisted scientific investigations, including fundamental explorations into complex systems and time-dependent interactions and material dynamics, we present our vision on the potential use of the TerRa facility and analyze some possible applications, ranging from non-linear physics under extreme conditions to polarization sensitive imaging and metamaterial-based sensing.

Multi-Pass Free Electron Laser Assisted Spectral and Imaging Applications in the Terahertz/Far-IR Range Using the Future Superconducting Electron Source BriXSinO / C. Koral, Z. Mazaheri, G. Paolo Papari, A. Andreone, I. Drebot, D. Giove, M. Rosaria Masullo, G. Mettivier, M. Opromolla, D. Paparo, A. Passarelli, V.M.P. Petrillo, B. Piccirillo, A. Rubano, M. Ruijter, P. Russo, L. Serafini. - In: FRONTIERS IN PHYSICS. - ISSN 2296-424X. - 10:(2022 Mar 03), pp. 725901.1-725901.18. [10.3389/fphy.2022.725901]

Multi-Pass Free Electron Laser Assisted Spectral and Imaging Applications in the Terahertz/Far-IR Range Using the Future Superconducting Electron Source BriXSinO

M. Opromolla;V.M.P. Petrillo;
2022

Abstract

Free-Electron Lasers are a rapidly growing field for advanced science and applications, and worldwide facilities for intense field generation, characterization and usage are becoming increasingly popular due to their peculiarities, including extremely bright, coherent, wide band tunable ultra-short pulses which are not achievable with other techniques up to now. In this review we give a thorough survey of the latest advances in the Free-Electron Laser-based field generation and detection methodologies and then present the main characteristics of a future THz/IR source, named TerRa@BriXSinO, based on a superconducting linear accelerator. The foreseen source is strongly monochromatic, with a bandwidth of 1% or smaller, highly coherent both transversally and longitudinally, with extreme versatility and high frequency tunability. After introducing the most recent and novel FEL-assisted scientific investigations, including fundamental explorations into complex systems and time-dependent interactions and material dynamics, we present our vision on the potential use of the TerRa facility and analyze some possible applications, ranging from non-linear physics under extreme conditions to polarization sensitive imaging and metamaterial-based sensing.
accelerators; free electron laser (FEL); imaging; infrared - IR; spectroscopy; Terahertz (THz) radiation;
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
3-mar-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
fphy-10-725901.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/921692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact