The objective of this study was to examine the effect of isonitrogenous substitution of solvent-extracted soybean meal (SBM) with solvent-extracted canola meal (CM) on enteric CH4 production, ruminal fermentation characteristics (including protozoa), digestion (in situ and apparent total-tract digestibility), N excretion, and milk production of dairy cows. For this purpose, 16 lactating Holstein cows, of which 12 were ruminally cannulated, were used in a replicated 4 × 4 Latin square (35-d periods; 14-d adaptation). The cows averaged (mean ± SD) 116 ± 23 d in milk, 692 ± 60 kg of body weight, and 47.5 ± 4.9 kg/d of milk production. The experimental treatments were control diet (no CM; 0%CM) and diets supplemented [dry matter (DM) basis] with 7.9% CM (8%CM), 15.8% CM (16%CM), or 23.7% CM (24%CM) on a DM basis. The forage:concentrate ratio was 52:48 (DM basis) and was similar among the experimental diets. Canola meal was included in the diet at the expense of SBM and soybean hulls, whereas the percentages of the other diet ingredients were the same. Intake of DM increased linearly, whereas apparent total-tract digestibility of DM, crude protein, neutral detergent fiber, and gross energy (GE) declined linearly as CM inclusion in the diet increased. Total volatile fatty acids concentration and butyrate molar proportion decreased linearly, whereas molar proportion of propionate increased linearly, and that of acetate was unaffected by CM inclusion in the diet. Ruminal ammonia concentration was not affected by inclusion of CM in the diet. Energy-corrected milk (ECM) yield increased linearly (up to 2.2 kg/d) with increasing CM percentage in the diet, whereas milk production efficiency averaged 1.63 kg of ECM/kg of DM intake and was unaffected by CM inclusion in the diet. Daily CH4 production decreased linearly with increasing CM percentage in the diet (489, 475, 463, and 461 g/d for 0%CM, 8%CM, 16%CM and 24%CM diets, respectively). As a consequence, CH4 emission intensity (g of CH4/kg of ECM) also declined linearly by up to 10% as the amount of CM increased in the diet. Methane production also decreased linearly when expressed relative to GE intake (5.7, 5.2, 5.1, and 4.9% for 0%CM, 8%CM, 16%CM and 24%CM diet, respectively). Quantity of manure N excretion was not affected by replacing SBM with CM; however, N excretion shifted from urine to feces as dietary percentage of CM increased, suggesting reduced potential for N volatilization. Results from this study show that replacing SBM with CM as a protein source in dairy cow diets reduced enteric CH4 emissions (g/d, % of GE intake, and adjusted for milk production) and increased milk production. The study indicates that CM can successfully, partially or fully, replace SBM in lactating dairy cow diets, with positive effects on animal productivity and the environment (i.e., less enteric CH4 emission and urinary N excreted). We conclude that compared with SBM, inclusion of CM meal in dairy cow diets can play a key role in reducing the environmental footprint of milk production.

Diet supplementation with canola meal improves milk production, reduces enteric methane emissions, and shifts nitrogen excretion from urine to feces in dairy cows / C. Benchaar, F. Hassanat, K.A. Beauchemin, G. Gislon, D.R. Ouellet. - In: JOURNAL OF DAIRY SCIENCE. - ISSN 0022-0302. - 104:9(2021 Sep), pp. 9645-9663. [10.3168/jds.2020-20053]

Diet supplementation with canola meal improves milk production, reduces enteric methane emissions, and shifts nitrogen excretion from urine to feces in dairy cows

G. Gislon
Penultimo
;
2021

Abstract

The objective of this study was to examine the effect of isonitrogenous substitution of solvent-extracted soybean meal (SBM) with solvent-extracted canola meal (CM) on enteric CH4 production, ruminal fermentation characteristics (including protozoa), digestion (in situ and apparent total-tract digestibility), N excretion, and milk production of dairy cows. For this purpose, 16 lactating Holstein cows, of which 12 were ruminally cannulated, were used in a replicated 4 × 4 Latin square (35-d periods; 14-d adaptation). The cows averaged (mean ± SD) 116 ± 23 d in milk, 692 ± 60 kg of body weight, and 47.5 ± 4.9 kg/d of milk production. The experimental treatments were control diet (no CM; 0%CM) and diets supplemented [dry matter (DM) basis] with 7.9% CM (8%CM), 15.8% CM (16%CM), or 23.7% CM (24%CM) on a DM basis. The forage:concentrate ratio was 52:48 (DM basis) and was similar among the experimental diets. Canola meal was included in the diet at the expense of SBM and soybean hulls, whereas the percentages of the other diet ingredients were the same. Intake of DM increased linearly, whereas apparent total-tract digestibility of DM, crude protein, neutral detergent fiber, and gross energy (GE) declined linearly as CM inclusion in the diet increased. Total volatile fatty acids concentration and butyrate molar proportion decreased linearly, whereas molar proportion of propionate increased linearly, and that of acetate was unaffected by CM inclusion in the diet. Ruminal ammonia concentration was not affected by inclusion of CM in the diet. Energy-corrected milk (ECM) yield increased linearly (up to 2.2 kg/d) with increasing CM percentage in the diet, whereas milk production efficiency averaged 1.63 kg of ECM/kg of DM intake and was unaffected by CM inclusion in the diet. Daily CH4 production decreased linearly with increasing CM percentage in the diet (489, 475, 463, and 461 g/d for 0%CM, 8%CM, 16%CM and 24%CM diets, respectively). As a consequence, CH4 emission intensity (g of CH4/kg of ECM) also declined linearly by up to 10% as the amount of CM increased in the diet. Methane production also decreased linearly when expressed relative to GE intake (5.7, 5.2, 5.1, and 4.9% for 0%CM, 8%CM, 16%CM and 24%CM diet, respectively). Quantity of manure N excretion was not affected by replacing SBM with CM; however, N excretion shifted from urine to feces as dietary percentage of CM increased, suggesting reduced potential for N volatilization. Results from this study show that replacing SBM with CM as a protein source in dairy cow diets reduced enteric CH4 emissions (g/d, % of GE intake, and adjusted for milk production) and increased milk production. The study indicates that CM can successfully, partially or fully, replace SBM in lactating dairy cow diets, with positive effects on animal productivity and the environment (i.e., less enteric CH4 emission and urinary N excreted). We conclude that compared with SBM, inclusion of CM meal in dairy cow diets can play a key role in reducing the environmental footprint of milk production.
canola meal; dairy cow; methane emission; urinary N; Animals; Cattle; Diet; Dietary Supplements; Digestion; Feces; Female; Lactation; Nitrogen; Rumen; Silage; Zea mays; Methane; Milk
Settore AGR/19 - Zootecnica Speciale
set-2021
ago-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022030221006925-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 358.51 kB
Formato Adobe PDF
358.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/921423
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact