The electronic energy levels of cyclo(glycine-phenylalanine), cyclo(tryptophan-tyrosine) and cyclo(tryptophan-tryptophan) dipeptides are investigated with a joint experimental and theoretical approach. Experimentally, valence photoelectron spectra in the gas phase are measured using VUV radiation. Theoretically, we first obtain low-energy conformers through an automated conformer-rotamer ensemble sampling scheme based on tight-binding simulations. Then, different first principles computational schemes are considered to simulate the spectra: Hartree-Fock (HF), density functional theory (DFT) within the B3LYP approximation, the quasi-particle GW correction, and the quantum-chemistry CCSD method. Theory allows assignment of the main features of the spectra. A discussion on the role of electronic correlation is provided, by comparing computationally cheaper DFT scheme (and GW) results with the accurate CCSD method.

A systematic study of the valence electronic structure of cyclo(Gly-Phe), cyclo(Trp-Tyr) and cyclo(Trp-Trp) dipeptides in the gas phase / E. Molteni, G. Mattioli, P. Alippi, L. Avaldi, P. Bolognesi, L. Carlini, F. Vismarra, Y. Wu, R.B. Varillas, M. Nisoli, M. Singh, M. Valadan, C. Altucci, R. Richter, D. Sangalli. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - 23:47(2021), pp. 26793-26805. [10.1039/d1cp04050b]

A systematic study of the valence electronic structure of cyclo(Gly-Phe), cyclo(Trp-Tyr) and cyclo(Trp-Trp) dipeptides in the gas phase

D. Sangalli
Ultimo
2021

Abstract

The electronic energy levels of cyclo(glycine-phenylalanine), cyclo(tryptophan-tyrosine) and cyclo(tryptophan-tryptophan) dipeptides are investigated with a joint experimental and theoretical approach. Experimentally, valence photoelectron spectra in the gas phase are measured using VUV radiation. Theoretically, we first obtain low-energy conformers through an automated conformer-rotamer ensemble sampling scheme based on tight-binding simulations. Then, different first principles computational schemes are considered to simulate the spectra: Hartree-Fock (HF), density functional theory (DFT) within the B3LYP approximation, the quasi-particle GW correction, and the quantum-chemistry CCSD method. Theory allows assignment of the main features of the spectra. A discussion on the role of electronic correlation is provided, by comparing computationally cheaper DFT scheme (and GW) results with the accurate CCSD method.
Dipeptides; Oligopeptides; Peptides, Cyclic; Phenylalanine; Tryptophan; Density Functional Theory
Settore FIS/03 - Fisica della Materia
Settore CHIM/02 - Chimica Fisica
2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
d1cp04050b.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 6.43 MB
Formato Adobe PDF
6.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/921411
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact